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ABSTRACT
New finite-dimensional adaptive observers are proposed for uncertain heat equation and a class of linear
Kuramoto–Sivashinsky equation (KSE) with local output. The observers are based on the modal decom-
position approach and use a classical persistent excitation condition to ensure practical exponential
convergence of both states and parameters estimation. An important challenge of this work is that it treats
the case when the function φ1(·, t) of the unknown part in the PDE model depends on the spatial variable
and φ1(·, t) ∈ L2(0, 1).
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1. Introduction

Adaptive state observers are used to deal with online states and
parameters estimation. For finite-dimensional systems, results
in this topic can be traced back to the beginning of the 1970s.
The most important works in this area can be founded in Kreis-
selmeier (1977), Zhang (2002), Besançon (2000) and Carroll
and Lindorff (1973) and references therein. For distributed
parameter systems (DPSs), two approaches exist in the litera-
ture. The first one is based on the infinite dimensional model
and uses the semigroup theory according to the initial work
of Demetriou et al. (1987) and Baumeister and Scondo (1997).
Recently, further results based on backstepping technics and
Lyapunov analysis (see Ahmed-Ali et al., 2016; Ghousein
et al., 2020; Lailler et al., 2024; Smyshlyaev & Krstic, 2006 and
references therein) have been also proposed for both parabolic
and hyperbolic systems. It has also to be noted that a recent
work combining backstepping and a novel methodology based
on polynomial optimisation and sum-of-squares decomposi-
tion have been also proposed for parabolic systems in Ascen-
cio (2017). The common feature of the above observers is that
they are governed by partially differential equations (PDEs).
This fact implies that their implementation employs space dis-
cretisation methods which may become computationally very
hard.

The second approach is based on an abstract model of DPSs.
The main advantage of this approach is that it uses only a
reduced model of PDE which is described by a set of ODEs.
In Lilly (1993), the authors extended the result of adaptive finite
dimensional observer (Kreisselmeier, 1977) to a class of infinite-
dimensional systems and showed that a reduced-order model
(a finite-dimensional part) can be used to identify parameters
and states of an infinite-dimensional system. More specially,
it is shown that if the residual energy from the unmodelled
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dynamics is bounded over a finite interval and the input is
persistently exciting, then the estimation will be bounded.

In this paper, we propose new finite-dimensional adaptive
observers for linear 1D heat equation with additive uncertain
parameters based on a reduced model for heat equation. The
main difference between Lilly (1993) and this paper is in the
fact that we do not consider here that the residual part is expo-
nentially stable and the unknown parameter is involving in the
residual part. In fact the presence of uncertainties depending
on the spatial variable in the state equation involves the exis-
tence of unknown coupling termswhich disturb the exponential
convergence of the residual part (infinite-dimensional part).
We also treat the systems with a local output which is not the
case in Lilly (1993). We use a decoupling transformation which
removes the uncertainties from the estimation error equation of
the finite dimensional part. The main difference between this
submission and the paper (Lailler et al., 2024) is in the fact
that the proposed observer in Lailler et al. (2024) is described
by a PDE which is more complicated in the implementation
than the one proposed in this submission which are only a set
of finite number of ODEs. Of course, here we have a practical
convergence on the estimation error systems but the accuracy
can be tuned by a number (N) which represents the number of
ODEs involved in the observer’s model. Furthermore, for par-
ticular cases, our observer, which is constituted by two finite
dimensional parts, ensures exponential convergence of the esti-
mations errors with a fixed number of observer’s gains which
corresponds to the number of unstable modes. Furthermore we
show that for sufficiently small varying delay, the result obtained
for delay-free case can be extended to the case where the out-
put is subject to a fast delay. Some preliminaries results of this
paper will be presented on Ahmed-Ali et al. (2023). Differently
from Ahmed-Ali et al. (2023), we treat here a more complicated
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situation by considering uncertainties in both state and out-
put equations, contrarily to Ahmed-Ali et al. (2023), where
the uncertainties are considered only in the output equation.
We also extend this approach to linear Kuramoto–Sivashinsky
equation (KSE) in Section 4.

Notations: We denote with C(a, b) the linear space of contin-
uous functions on the domain (a, b). L2(a, b) is the linear space
of square integrable functions on (a, b). H1(a, b) is the Sobolev
space of functions in L2(a, b) such that the function and its
first derivative have finite L2 norm. Finally we denote ut = ∂u

∂t ,
ux = ∂u

∂x and uxx = ∂2u
∂x2 .

2. System description and assumptions

Consider the class of parabolic system:

ut = uxx + qu + φ1(x, t)θ1 for t > 0, x ∈ (0, 1) (1a)

ux(0) = u(1) = 0 (1b)

u(x, 0) = u0 (1c)

with initial condition u0 ∈ H1(0, 1) with u0(1) = 0 and under
the measurement

y(t) = u(0, t) + φ(t)θ2. (2)

The constant q is a positive known parameter, φ and φ1 are
known and continuous functions which satisfy

|φ(t)| ≤ Mφ ∀ t ≥ 0 (3)

and

|φ1(x, t)| ≤ Mφ1 ∀ x ∈ [0, 1], t ≥ 0 (4)

with some positive constantsMφ andMφ1 .
We also suppose that φ1(., t) ∈ H1(0, 1) with φ1(1, t) = 0.

The vectors θ1 ∈ Rm and θ2 ∈ Rp are vectors of unknown
parameters. The rows φ1(·, t) and φ(·) satisfy respectively
φT
1 (·, t) ∈ Rm, φT(·) ∈ Rp. The term φ(t)θ2 models either sen-

sors uncertainties or faults to be detected and isolated. This
uncertain term induces a difference between u(0, t) and the
available measurement y(t). The term φ1(x, t)θ1 models uncer-
tainties or disturbances which also disturb the model. The role
of the adaptive observer is to provide an accurate estimation
of both unmeasurable state u(x, t) and the unknown vector of
parameters θ .

The well-known regular Sturm–Liouville eigenvalue prob-
lem ψ ′′(x) + λψ(x) = 0, x ∈ [0, 1] with ψ(1) = ψ ′(0) = 0,
generates an increasing sequence of eigenvalues λn = π2

4 (2n −
1)2 n ≥ 1 with corresponding eigenfunctions ψn(x) =√
2 cos(

√
λnx) for n ≥ 1. The eigenfunctions ψn form an

orthonormal basis of L2(0, 1). A strong solution of (1a) is
a function u ∈ L2((0,∞);H2(0, 1)) ∩ C([0,∞);H1(0, 1)) and
ut ∈ L2((0,∞); L2(0, 1)) that satisfies (1c) for t = 0 and (1a),
(1b) for almost all t > 0. By (Robinson, 2001, Theorem 7.7), (
1a) has a unique strong solution for u0 ∈ H1(0, 1) s.t u0(1) = 0.
Consequently the solutions of Equation (1a) can be presented as

u(x, t) =
∞∑
n=1

zn(t)ψn(x) (5)

where zn(t) = ∫ 1
0 u(x, t)ψn(x) dx. The function φ1 can be also

written as follows:

φ1(x, t) =
∞∑
n=1

pn(t)ψn(x) (6)

with pn(t) = ∫ 1
0 φ1(x, t)ψn(x) dx. Note that since both φ1 and

ψn are bounded, then pn are also bounded and satisfy |pn| ≤√
2Mφ1 .
Differentiating the modes zn and further integrating by parts

twice we have

żn(t) = −λnzn(t) + qzn(t) + pn(t)θ1 n = 1, 2, . . . . (7)

The output y can also be expressed as follows:

y(t) = √
2

∞∑
n=1

zn(t) + φ(t)θ2 (8)

Since λn is an increasing sequence then we can define an integer
N0 as the smallest integer n for which the following inequality
holds:

−λn + q < 0, ∀ n > N0 (9)

We assume additionally that q 
= λn.

Remark 2.1: Note that the presence of the uncertain term
φ1(x, t)θ1 in the state equation induces that the infinite dimen-
sional part constituted by the modes zi, i = N0 + 1 · · · . is not
exponentially stable, but it is ultimately bounded.

3. Finite-dimensional adaptive observer design

3.1 Adaptive observer structure

Following Katz Fridman (2020), we will construct
N-dimensional adaptive observer with N ≥ N0 to be defined
later. We propose the following structure :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û(x, t) =
N∑

n=1
ẑn(t)ψn(x)

˙̂zn(t) = −μnẑn + pn(t)θ̂1 − ln(ŷ − y) + v1 n = 1, . . . ,N0
˙̂zn(t) = −μnẑn + pn(t)θ̂1 + v2 n = N0 + 1, . . . ,N

ŷ = √
2

N∑
n=1

ẑn(t) + φ(t)θ̂2.

(10)

with N0 and N are respectively defined in (9) and (22), μn =
λn − q, ln are observer gains, θ̂1(t) and θ̂2(t) are the estimates
of θ1 and θ2, v1 and v2 are additional signals that we will choose
later on.

Denote An = diag(−μ1, . . . ,−μn), Cn = (
√
2, . . . ,

√
2) is

a row which has n columns, Ln = (l1, . . . , ln)T and, pn =
(p1, . . . , pn)T are vectors with n raws. Ai−j = diag(−μi+1, . . . ,
−μj), pi−j = (pi, . . . , pj)T ,Cn−j = (

√
2, . . . ,

√
2) is a rowwhich

has n − j columns. Since (AN0 ,CN0) is observable (Katz & Frid-
man, 2020), we choose LN0 such that AN0 − LN0CN0 is Hurwitz.
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Consider the state estimation errors Z̃N0 = (z̃1, . . . , z̃N0)
T and

Z̃N−N0 = (z̃N0+1, . . . , z̃N)T where z̃i = ẑi − zi, and the estima-
tion parameters errors θ̃1 = θ̂1 − θ1 and θ̃2 = θ̂2 − θ2. Then the
observation error system is expressed as follows:

˙̃ZN0(t) = (AN0 − LN0CN0)Z̃N0

+ pN0 θ̃1(t) − LN0φ(t)θ̃2(t)

− ŁN0CN−N0 Z̃N−N0 + LN0

√
2ζ(t) + v1

˙̃ZN−N0(t) = AN−N0 Z̃N−N0 + pN−N0(t)θ̃1(t) + v2

û(x, t) − u(x, t) =
N∑
i=1

z̃i(t)ψi(x) −
∑

i≥N+1
zi(t)ψi(x) (11)

where

ζ(t) =
∞∑

i=N+1
zi(t) (12)

It was already proven in Katz and Fridman (2020) that∑∞
n=N+1 λnz2n is well defined for any t> t0 and

∑∞
n=N+1 λnz2n ≤

||ux(., t)||2L2(0,1). We have also the following property :

|ζ(t)|2 =
∣∣∣∣∣

∞∑
i=N+1

zi(t)

∣∣∣∣∣
2

≤
∞∑

n=N+1
λnz2n (13)

Consider the Lyapunov function (Katz & Fridman, 2020),

V(t) =
∞∑

n=N+1
λnz2n (14)

then its time derivative will be written as follows:

V̇(t) = −2
∞∑

n=N+1
λnμnz2n + 2

∞∑
n=N+1

λnznpn(t)θ1 (15)

Using the Young’s inequality, we derive

V̇(t) ≤ −2
∞∑

n=N+1
λnμnz2n + 2

∞∑
n=N+1

λnz2n

+ |θ1|2
2

∞∑
n=N+1

λnp2n(t). (16)

On the other hand, for any positive constant δ we can write

V̇ + 2δV ≤ −2
∞∑

n=N+1
λnμnz2n + 2

∞∑
n=N+1

λnz2n

+ 2δ
∞∑

n=N+1
λnz2n + |θ1|2

2

∞∑
n=N+1

λnp2n (17)

Since φ1(· · · , t) ∈ H1(0, 1) with φ1(1, t) = 0, then∑∞
n=N+1 λnp2n ≤ ||φ′

1||2L2(0,1). From this we deduce the follow-
ing inequality:

V̇ + 2δV ≤ −2
∞∑

n=N+1
(μnλn − δλn − λn)z2n

+ |θ1|2
2

||φ′
1||2L2(0,1) (18)

Choosing N sufficiently large such that

μn − δ − 1 > 0, ∀ n > N (19)

which gives us

N >
1
π

√
q + 1 + δ + 1

2
(20)

then

V̇ ≤ −2δV + |θ1|2
2

||φ′
1||2L2(0,1) (21)

Since φ1(., t) ∈ H1(0, 1) with φ1(1, t) = 0 and u0 ∈ H1(0, 1)
with u0(1) = 0, then both V(0) and ||φ′

1||L2(0,1) are bounded
and consequently, we deduce that

|ζ(t)|2 ≤ e−2δtV(0) + |θ1|2
4δ

||φ′
1||2L2(0,1). (22)

From this last inequality, we deduce that |ζ(t)| converges to a
ball with a radius which is proportional to |θ1|

2
√

δ
||φ′

1||L2(0,1). This
means that by increasing δ, the above radius can be made as
small as we want. Note that if δ is increased, then N must be
also increased following condition (22).

Remark 3.1: The Number N is required to be sufficiently large
for two reasons: the first one is related to the number of unsta-
blemodes (N0 defined in (9) ). The observer should at least have
this minimum number of ODEs to ensure the boundedness of
the estimation error. The second reason is related to the accu-
racy of the observer. Aswe can see the accuracy of the estimation
errors depends on the positive constant δ. This is themain sense
of Equation (19) which describes a sufficient condition involv-
ing bothN (number of ODEs) and δ. More precisely, we use this
inequality to derive a Number N that ensures a desired accu-
racy of our observer. It has also to be noted that using PDE is
equivalent to have an infinite number of ODEs.

Consider for Z̃N0 and Z̃N−N0 defined in (11) the decoupling
transformations (Zhang, 2002)

eN0(t) = Z̃N0(t) − α1
1(t)θ̃1(t) − α2

1(t)θ̃2(t) (23)

and

eN−N0(t) = Z̃N−N0(t) − α2(t)θ̃1(t) (24)

where α1
1 and α2

1 are the solutions of an auxiliary filter which is
defined as follows:⎧⎨

⎩
α̇1
1(t) = (AN0 − LN0CN0)α

1
1(t) + pN0 − LN0CN−N0α2(t)

α̇2
1(t) = (AN0 − LN0CN0)α

2
1(t) − LN0φ(t)

v1 = α1
1(t)

˙̂θ1 + α2
1(t)

˙̂θ2
(25)

and α2 is the solution of an auxiliary filter which is also defined
as follows: {

α̇2(t) = AN−N0α2(t) + pN−N0(t)
v2 = α2(t) ˙̂θ1 (26)
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From this, we deduce two ODEs of eN0 and eN−N0 which do not
depend on θ̃ .

ėN0(t) = (AN0 − LN0CN0)eN0(t) + √
2 LN0ζ(t)

− LN0CN−N0eN−N0(t). (27)

and

ėN−N0(t) = (AN−N0)eN−N0(t). (28)

Remark 3.2: When we write the state estimation errors equa-
tions (11), we remark that they also depend on the parameter
estimation errors. The auxiliary filters (25) and (26) are then
used to decouple the state estimation errors from the param-
eter estimation errors. As you can see the parameter estimation
errors is not involved in Equations (27) and (28). We will also
see below that these filters will facilitate greatly the convergence
analysis and the design of parameter estimation laws.

Since N > N0, then AN−N0 is Hurwitz and consequently
eN−N0 is exponentially stable. Consider

V0(t) = eN0(t)
TP0eN0(t) (29)

where P0 satisfies the following inequality:

P0(AN0 − LN0CN0) + (AN0 − LN0CN0)
TP0 ≤ −2P0 (30)

Its time derivative will be expressed as follows:

V̇0 ≤ −2V0

+ 2eN0(t)
TP0

(√
2 LN0ζ(t) − LN0CN−N0eN−N0(t)

)
(31)

Applying again Young’s inequality, then

V̇0 ≤ −2V0 + ε1|eN0(t)|2 + 4
ε1

|P0|2||LN0 |2|ζ(t)|2

+ 2|P0|2
ε1

|LN0CN−N0 |2|eN−N0(t)|2 (32)

which gives us

V̇0 ≤ −
(
2 − ε1

λmin(P0)

)
V0 + 4

ε1
|P0|2||LN0 |2|ζ(t)|2 (33)

+ 2|P0|2
ε1

|LN0CN−N0 |2|eN−N0(t)|2. (34)

Choosing ε1 = λmin(P0), then

V̇0 ≤ −V0 + 4
λmin(P0)

|P0|2||LN0 |2|ζ(t)|2 (35)

+ 2|P0|2
λmin(P0)

|LN0CN−N0 |2|eN−N0(t)|2. (36)

Since eN−N0(t) is exponentially vanishing and |ζ(t)| is bounded,
we can also deduce from the comparison lemma that |eN0 |
converges to a ball with a radius which is proportional to
|θ1|
2
√

δ
||φ′

1||L2(0,1).

3.1.1 Estimation law design
Following Zhang (2002), we propose the following estimation
law: ( ˙̂θ1˙̂θ2

)
= −R(t)KT(t)(ŷ(t) − y(t)) (37)

where

K(t) = (CN0α
1
1(t) + CN−N0α2(t) CN0α

2
1(t) + φ(t)) (38)

and

dR(t)
dt

= R(t) − R(t)KT(t)K(t)R(t) (39)

It was already proven in Zhang (2002) that if |α1
1 |, |α2

1 | and |φ|
are bounded and if the persistent excitation condition∫ t+T

t
KT(s)K(s) ds ≥ β0I (40)

holds for some positive constant β0, then both R(t) and R−1(t)
are positive definite matrices and there exist two positive con-
stants β1 and β2 such that the following inequalities hold :

β1Im ≤ R(t) ≤ β2Im (41)

and the inverse matrix satisfies

dR−1(t)
dt

= −R−1(t) + KT(t)K(t) (42)

with

β1Im ≤ R−1(t) ≤ β2Im (43)

3.1.2 Convergence analysis
The parameter estimation error is governed by the following
ODEs :

˙̃θ = −R(t)KT(t)K(t)θ̃ (t) − R(t)KT(t)(CN0εN0(t)

+ CN−N0eN−N0(t) − √
2ζ(t)). (44)

To study the convergence of the vector θ̃ =
(

θ̃1
θ̃2

)
, let us consider

the following Lyapunov function for (44):

Vθ = θ̃TR−1(t)θ̃ . (45)

Then the time-derivative of Vθ satisfies the following equality:

V̇θ (t) = −Vθ (t) + |CN0εN0(t) + CN−N0eN−N0(t) − √
2ζ(t)|2.

(46)

Using Young’s inequality, we derive

V̇θ (t) ≤ −Vθ (t) + 4|CN0εN0(t)|2 + 4|CN−N0eN−N0(t)|2
+ 8|ζ(t)|2. (47)

Since eN−N0 converges exponentially to zero and both eN0
and ζ converge exponentially to balls, then by applying the
comparison lemma to (47), we conclude that θ̃ will also
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converge to a ball with a radius which is proportional to
|θ |√

δ
||φ′

1||L2(0,1). On the other hand, from (23) and (24), we can

deduce that |Z̃N(t)|2 ≤ 4|εN(t)|2 + 4|α(t)|2|θ̃ (t)|2, where α =
(α1

1 ,α
2
1 ,α2)

T . Since both systems (25) and (26) are ISS and
|pN | and |φ| are bounded, then |α1

1 |, |α2
1 | and |α2| are also

bounded. This allows us to conclude that |Z̃N | is also exponen-
tially convergent to a ball with a similar radius. Now if we use
the Parseval’s equality, then we have

||û(·, t) − u(·, t)||2H1(0,1) =
N∑
i=1

λiz̃2i (t) −
∑

n≥N+1
λnz2n(t). (48)

Since
∑N

i=1 λiz̃2i (t) ≤ λN |Z̃N |2 then we can also conclude that
the H1 norm ||û(., t) − u(., t)||H1(0,1) converges to a ball with a
radius which is proportional to |θ |√

δ
||φ′

1||L2(0,1).

Theorem 3.1: Consider system (1a) with initial condition u0 ∈
H1(0, 1), u0(1) = 0, and adaptive observer described by (10),
(25), (26) and (37). Given δ > 0, let N0 ∈ N satisfy (9) and
N ∈ N satisfy (22). Let the vector of gains LN0 = (l1, . . . , lN0)

T

satisfy (30). Then under persistent excitation condition (40), the
norms ||ũ(., t)||H1(0,1) and |θ̃1(t)| and |θ̃2(t)| converge to balls
with a radius which is proportional to |θ1|√

δ
||φ′

1||L2(0,1).

Remark 3.3: It has to be noted that the radius |θ1|√
δ
||φ′

1||L2(0,1)
can be made as small as we want by increasing δ. This also
implies that N has to be sufficiently large following (22).

Remark 3.4: Note that if the function φ1 can be expressed as a
finite sum of the form,

φ1(x, t) =
Nφ1∑
n=1

pn(t)ψn(x) (49)

then by tacking N ≥ Nφ1 , we deduce that pi = 0, ∀i > N and
consequently both ||ũ(., t)||L2(0,1) and |θ̃ (t)| converge exponen-
tially to zero.

3.2 Extension to the case of delayed output

In this section, we extend the above results to the case of delayed
output with known and bounded fast varying delay τ(t) ≥ 0
(without any constraints on the delay derivative). In this case

y(t) = u(0, t − τ(t)) + φ(t − τ(t)))θ2. (50)

Following (10), we propose the following structure:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û(x, t) =
N∑

n=1
ẑn(t)ψn(x)

˙̂zn(t) = −μnẑn + pn(t)θ̂1 − ln(ŷ − y) + v1 n = 1, . . . ,N0˙̂zn(t) = −μnẑn + pn(t)θ̂1 + v2 n = N0 + 1, . . . ,N

ŷ = √
2

N∑
n=1

ẑn(t − τ(t)) + φ(t − τ(t))θ̂2.

(51)

Using the same decoupling transformations (23) and (24) where
α1
1 and α2

1 the solution of an auxiliary filter which is defined as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇1
1(t) = AN0α

1
1(t) − LN0CN0α

1
1(t − τ(t)) + pN0

− LN0CN−N0α2(t − τ(t))

α̇2
1(t) = AN0α

2
1(t) − LN0CN0α

2
1(t − τ(t)) − LN0φ(t − τ(t))

v1 = α1
1(t)

˙̂θ1 + α2
1(t)

˙̂θ2 + LN0CN0α
1
1(t − τ(t))

× (θ̂1(t − τ(t)) − θ̂1(t)) + LN0CN−N0α2(t − τ(t))

× (θ̂1(t − τ(t)) − θ̂1(t)) + LN0φ(t − τ(t))

× (θ̂2(t − τ(t)) − θ̂2(t))
(52)

and α2 is the solution of an auxiliary filter which is also defined
as follows: {

α̇2(t) = AN−N0α2(t) + pN−N0(t)
v2 = α2(t)

˙̂θ1 (53)

we obtain the following DDEs for eN0 and eN−N0 which do not
depend on θ̃ .

ėN0(t) = AN0eN0(t) − LN0CN0eN0(t − τ(t)) (54)

+ √
2LN0ζ(t − τ(t))

− LN0CN−N0eN−N0(t − τ(t)) (55)

and

ėN−N0(t) = (AN−N0)eN−N0(t) (56)

where ζ(t) is defined in (12).
Inspired by Ahmed-Ali et al. (2020), we propose the follow-

ing adaptive law:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂θ = Rτ (t)KT(t − τ(t))(ŷ(t) − y(t)) + Rτ (t)KT(t − τ(t))

× h(t − τ(t))θ̂ (t − τ(t)) − θ̂ (t))

h(t − τ(t)) = [CN0α
1
1(t − τ(t)) + CN−N0α2(t − τ(t))

CN0α
2
1(t − τ(t)) + φ(t)]

dRτ (t)
dt

= Rτ (t) − Rτ (t)KT(t − τ(t))K(t − τ(t))Rτ (t)

(57)

where θ̂ =
(

θ̂1
θ̂2

)
andK(t) given by (38). The parameter estima-

tion error θ̃ = θ̂ − θ is governed by the following ODE:

˙̃θ = −Rτ (t)KT(t − τ(t))K(t − τ(t))θ̃ (t) − Rτ (t)KT(t − τ(t))

× (CNεN(t − τ(t)) − √
2ζ(t − τ(t))) (58)

Note that Equation (54) is very similar to (22) of Selivanov
and Fridman (2018) but it contains two supplementary terms.
An exponential vanishing one which is eN−N0(t) and the
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bounded term ζ(t − τ(t)). Let us consider the following Lya-
punov functional (Selivanov & Fridman, 2018):

Wd = eTN0
P0eN0 + ρ1

∫ t

t−τm

|eN0(s)|2 ds

+ τmρ2

∫ 0

t−τm

∫ t

t+θ
e−2δ(t−s)|ėN0(s)|2 ds

where ρ1 and ρ2 are two positive constants. Then, from
Theorem1 of Selivanov and Fridman (2018), we ensure the exis-
tence of a bound τm of the delay and a positive constant γ such
that

Ẇd ≤ −2δWd + γ (|ξ(t − τ(t))|2 + |eN−N0 |2).
From this we deduce that both (54) and (58) are exponentially
convergent to balls with a radius similar to one of Theorem 3.1.

3.3 Extension to sampled-data case

We suppose that the output

y(tk) = u(0, tk) + φ(tk)θ2 (59)

is available only at sampling instants tk which constitute an
increasing sequence defined as follows: 0 = t0 < t1 < · · · ,<
tk < · · · , limtk→∞ = ∞ with tk+1 − tk ≤ h is the maximum
allowable sampling period. It is well known that the sampled-
data case can be reformulated as time-delay one with a delay
τ(t) = t − tk for all t ∈ [tk, tk+1). Then the observer for the
sampled-data case can be obtained by replacing t − τ(t) by tk
in Equations (51), (52), (53), (57).

4. Adaptive observer for linear KSE

In this section, we show that we can also propose a finite-
dimensional adaptive observer for linearKuramoto–Sivashinsky
equation (KSE). As in Katz and Fridman (2021) consider the
KSE

wt = −wxxxx − νwxx + φs
1(x, t)θ1, for t > 0, x ∈ (0, 1)

(60a)

w(0, t) = 0, w(1, t) = 0, wxx(0, t) = wxx(1, t) = 0 (60b)

w(x, 0) = w0 (60c)

with w0 ∈ H2(0, 1) and under the measurement

y(t) = w(x∗, t) + φs(t)θ2 x∗ ∈ (0, 1). (61)

where the functions φs
1 and φs are known functions and

bounded. We also suppose that φs
1(., t) ∈ H1

0(0, 1). A strong
solution of (60a) is a function w ∈ L2((0,∞);H4(0, 1)) ∩
C([0,∞);H2(0, 1)) and wt ∈ L2((0,∞); L2(0, 1)) that satisfies
(60c) for t = 0 and (60a), (60b) for almost all t > 0. By [17,
Th. 7.7], (60a) has a unique strong solution for w0 ∈ H2(0, 1)
s.t w0(1) = w0(0) = 0. We suppose that ν 
= π2n2,∀n ≥ 1. By
using eigenvalues and eigenfunctions of the Sturm–Liouville
problem ϕ′′ + λϕ = 0, ϕ(0) = ϕ(1) = 0 given by an = π2n2

and ϕn(x) = √
2 sin(

√
anx), the solution of (60a) can be pre-

sented as

w(x, t) =
∑
n≥1

wn(t)ϕn(x) (62)

where wn are solutions of the following ODEs:

ẇn(t) = −(a2n − νan)wn(t) + psn(t)θ1 n = 1, 2, . . . . (63)

with wn(t) = ∫ 1
0 w(x, t)ϕn(x) dx and psn(t) = ∫ 1

0 φs
1(x, t)

ϕn(x) dx. The measurement y will be also expressed as follows:

y(t) = √
2
∑
n≥1

wn(t) sin(
√
anx∗) + φs(t)θ2. (64)

Note that since x∗ ∈ (0, 1), then sin(
√
anx∗) 
= 0,∀n ≥ 1. As for

reaction–diffusion systems, we can propose under the persistent
excitation condition (40), the following Ns finite-dimensional
adaptive observer structure where Ns ≥ Ns

0 to be defined later:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŵ(x, t) =
Ns∑
n=1

ŵn(t)ϕn(x)

˙̂wn(t) = −(a2n − νan)ŵn + +psn(t)θ̂1(t) − lsn(ŷ − y(t)) + vs1
n = 1, . . . ,Ns

0

˙̂wn(t) = −(a2n − νan)ŵn + +psn(t)θ̂1(t) + vs2
n = Ns

0 + 1, . . . ,Ns

ŷ(t) = √
2

Ns∑
n=1

sin(
√
anx∗)ŵn(t) + φ(t)θ̂2(t)

( ˙̂θ1˙̂θ2

)
= −Rs(t)(Ks)T(t)(ŷ(t) − y(t))

(65)

The integer Ns
0 is the smallest positive constant satisfying

aNs
0
− ν > 0 (66)

Consider the observation error W̃Ns = (w̃1, . . . , w̃Ns)T where
w̃i = ŵi − wi, and the parameter estimation error θ̃ = θ̂ − θ .
Then the observation error system is expresses as follows:

w̃(x, t) = ŵ(x, t) − w(x, t) =
Ns∑
n=1

w̃iϕn(x) −
∑

n≥Ns+1

wiϕn(x)

(67)

˙̃WNs
0
(t) = (As

Ns
0
− LsNs

0
Cs
Ns
0
)W̃Ns

0
+ psn(t)θ̃1(t) − LsNs

0
φ(t)θ̃2(t)

− +LsNs
0
ζ s(t) + vs1 (68)

and

˙̃WNs−Ns
0
(t) = As

Ns−Ns
0
W̃Ns−Ns

0
+ psn(t)θ̃1(t) + vs2 (69)

where

As
Ns = diag(−(a21 − νa1), . . . ,−(a2Ns − νaNs)) (70)
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and

Cs
Ns = √

2(sin(
√
a1x∗)), . . . , sin(

√
aNsx∗)). (71)

with

ζ s(t) = √
2

∑
n≥Ns+1

sin(
√
anx∗)wn(t). (72)

Since all terms (a2n − νan) and sin(
√
anx∗) are non equal to

zero, then the pair (As
Ns ,Cs

Ns) is detectable. This allows us
to choose LsNs = (ls1, . . . , l

s
Ns)T such that the matrix As

Ns −
LsNsCs

Ns satisfy for symmetric positive matrix Ps0 the following
inequality:

Ps0(A
s
N0

− LsNs
0
Cs
Ns
0
) + (As

N0
− LNs

0
Cs
Ns
0
)TPs0 ≤ −2Ps0. (73)

Now if we consider the same decoupling transformations (23)
and (24), we obtain

ε̇sNs
0
(t) = (As

Ns
0
− LsNs

0
Cs
Ns
0
)εsNs

0
(t) + LsNs

0
ζ s(t)

− LNs
0
CNs−Ns

0
eNs−Ns

0
(t) (74)

and

ėsNs−Ns
0
(t) = (ANs−Ns

0
) esNs−Ns

0
(t) (75)

and the parameter estimation error will also satisfy

˙̃θ = −Rs(t)(Ks)T(t)Ks(t)θ̃ (t) − Rs(t)(Ks)T(t)(CNs
0
εNs

0
(t)

+ CNs−Ns
0
esN−N0

(t) − √
2ζ s(t)). (76)

Note that from Katz and Fridman (2021), we have the following
property:

|ζ s(t)|2 ≤
∑

n≥Ns+1

anw2
n(t) < ∞ (77)

If we consider the Lyapunov function of ((29) in Katz and Frid-
man (2022)) :

Vs(t) =
∑

n≥Ns+1

anw2
n(t) (78)

then we have

V̇s(t) + 2δVs(t) = −2
∑

n≥Ns+1

a2n(an − ν)w2
n +

∑
n≥Ns+1

2δanw2
n

+ 2
∑

n≥Ns+1

anwnpsn(t)θ1 (79)

Using young’s inequality, we have for any positive constant δ:

V̇s(t) + 2δVs(t) ≤ −2
∑

n≥Ns+1

[a2n(an − ν) − δan − an]w2
n

+ |θ1|2
2

∑
n≥Ns+1

an(psn(t))
2 (80)

Now, choosing Ns as the smallest integer which satisfy the
following inequality:

aNs(aNs − ν) − δ − 1 > 0 (81)

with aNs = π2(Ns)2. From this we derive similar property than
the heat equation case:

V̇s(t) ≤ −2δVs(t) + |θ1|2
2

||(φs
1)

′||2L2(0,1) (82)

Figure 1. Estimation errors for system (1a) with θ1 = 6.5 and θ2 = −2.
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Figure 2. Estimation errors for system (60a) with θ1 = 6.5 and θ2 = −2.

which gives us

|ζ s(t)|2 ≤ e−2δtVs(0) + |θ1|2
4δ

||(φs
1)

′||2L2(0,1) (83)

which is similar to (22). We can also remark that (74), (75)
and (76) are similar to (27), (28) and (44). Then we can propose
the following result:

Theorem 4.1: Consider system (60a)with initial condition w0 ∈
H2(0, 1),w(1) = 0 = w(0) = 0, and adaptive observer described
by (65). Given δ > 0, let Ns

0 ∈ N satisfy (66) and Ns ∈ N

satisfy (81). Let the vector of gains LN0 = (l1, . . . , lN0)
T sat-

isfy (73). Then under persistent excitation condition, the norms
||w̃(., t)||H1(0,1), |θ̃1(t)| and |θ̃2(t)| converge to balls with a radius
which is proportional to |θ1|√

δ
||φs

1||H1(0,1).

5. Example

In this section, we illustrate our result on system (1a). We con-
sider q = 3 and φ1(x, t) = cos(π x/2) + sin(t) cos(

√
3π x/2).

The output y = u(0, t) + (2 − cos(10t))θ2. The condition (9)
gives us N0 > 1

2 +
√
3

π , then the smallest integer satisfy-
ing (9) is N0 = 2. Given δ = 54, then from (22), we have
N > 7/3. From this, we deduce that the smallest integer
satisfying (22) is N = 3. The simulations are performed
with N0 = 2 and N = 3, L = (23.2, 1.1)T . We also con-
sider that θ1 = 6.5 and θ2 = −2. We also illustrate our result
on system (60a) with ν = π2/2 and φs

1(x, t) = sin(πx) +
cos(t) sin(2πx) and δ = 54. This conditions give usNs

0 = 1 and
Ns = 2 (Figures 1 and 2).

6. Conclusion

In this paper, we presented new adaptive observers for heat and
KSE equations. Our algorithms ensure good performances and
are based only on a finite number of ODEs. The accuracy of our
observers depends on the number of ODEs N. Further results
concerning other classes of PDEs are under investigation.
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