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A B S T R A C T

We consider a simply-supported Euler–Bernoulli beam with viscous and Kelvin–Voigt damping. Our objective
is to attenuate the effect of an unknown distributed disturbance using one piezoelectric actuator. We show
how to design a state-feedback controller based on a finite number of dominating modes that guarantees that
the 𝐿2 gain is not greater than a given value. If the remaining (infinitely many) modes are simply ignored, the
calculated 𝐿2 gain is wrong. This happens because of the spillover phenomenon that occurs when the effect of
the control on truncated modes is not accounted for in the feedback design. We propose a simple modification
of the 𝐻∞ cost that prevents spillover. The key idea is to treat the control as a disturbance in the truncated
modes and find the corresponding 𝐿2 gains using the bounded real lemma. These 𝐿2 gains are added to the
control weight in the 𝐻∞ cost for the dominating modes, which prevents spillover. A numerical simulation
of an aluminum beam with realistic parameters demonstrates the effectiveness of the proposed method. The
presented approach is applicable to other types of PDEs, such as the heat, wave, and Kuramoto–Sivashinsky
equations, as well as their semilinear versions. The proposed method gives a Lyapunov functional that can
also be used for guaranteed cost control, regional stability analysis, and input-to-state stability.
1. Introduction

The 𝐻∞ control theory enables the design of controllers robust to
modeling errors, measurement noise, and unknown disturbances [1,
2]. Its extension to infinite-dimensional systems is challenging, espe-
cially if the controller is required to be finite-dimensional. In partic-
ular, the direct extension of the frequency-domain approach results in
infinite-dimensional controllers [3,4], which are then approximated by
finite-dimensional ones [5–7]. The approximation leads to performance
degradation known as spillover, which can be characterized via the 𝐻∞
norm of the approximation error [8]. The frequency-domain approach,
which is very natural for 𝐻∞ control, may be difficult to use in the
infinite-dimensional case since the transcendental transfer function
of an infinite-dimensional plant may be hard to find [9], its inner-
outer factorization required for the design is not straightforward [4],
and the MIMO case requires restrictive assumptions [3]. Furthermore,
the frequency-domain approach is not applicable to guaranteed cost
control, regional stability analysis, systems with time-varying delays,
and nonlinear systems.

The time-domain approach avoids these restrictions. Its direct ex-
tension to infinite-dimensional systems leads to an operator Riccati
equation, which also results in an infinite-dimensional controller [10,
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11]. To obtain a finite-dimensional controller, one can perform modal
decomposition [12,13] and design a controller for a finite number of
dominating modes [14–16]. Similarly to the frequency-domain design,
this leads to spillover: neglected modes deteriorate the overall system
performance [17,18]. Nevertheless, stability under spillover can be
guaranteed using residual filters [19–21] or spectral properties of linear
operators representing the dynamics [22,23].

The time-domain performance analysis under spillover is more chal-
lenging than the stability analysis and requires careful treatment of the
neglected modes. Such treatment has been provided for parabolic PDEs
in [24–27] with subsequent extensions to input/output delays [28–30],
semilinear systems [31,32], as well as the Kuramoto–Sivashinsky [33],
wave [34], and Euler–Bernoulli [35] equations.

This paper proposes a new way of dealing with spillover in the time
domain. Namely, we treat the control input as a disturbance in the
residue modes and explicitly solve the algebraic Riccati equation for
each neglected mode to find the input-to-state 𝐿2 gains. These gains
are added to the control weight in the cost used to design a state-
feedback controller that guarantees that the 𝐿2 gain is not greater than
a given value. This idea leads to a simple yet efficient way of designing
a finite-dimensional controller that avoids spillover. The analysis is
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based on the cost decomposition presented in Section 3.3. We develop
his idea to attenuate disturbances in the Euler–Bernoulli beam with
iezoelectric actuators, which is of great importance for aerospace,

civil, and mechanical engineering. Using a numerical example of an
aluminum beam, we demonstrate a drastic improvement compared to
our previous results in [35]. Namely, spillover is avoided using just 8
modes instead of 32, and we prove that the 𝐿2 gain can only decrease
when more modes are considered.

The frequency-domain approach to the 𝐻∞ control of beams was
developed in [36–38], the controllability problem under piezoelectric
actuators was studied in [39–41], and experimental results (without
spillover analysis) were reported in [42,43]. Here, we develop the
time-domain method, which, differently from the frequency-domain
approach, can be extended to guaranteed cost control and regional
stability analysis. Furthermore, the proposed idea can significantly
improve the finite-dimensional controller design for other types of
PDEs, including the heat, wave, and Kuramoto–Sivashinky equations.
It also admits an extension to semilinear PDEs in a manner similar
o [31,32].

Notations: | ⋅ | is the Euclidean norm, ‖ ⋅ ‖ is the 𝐿2 norm, ⟨⋅, ⋅⟩
is the scalar product in 𝐿2, 𝐻𝑝(0, 𝜋) with 𝑝 ∈ N are the Sobolev
spaces, 𝐻−𝑝(0, 𝜋) are their dual spaces, 𝐻1

𝑙 𝑜𝑐 (0,∞) are the functions
that belong to 𝐻1(𝐾) for any compact 𝐾 ⊂ (0,∞), diag{𝜔1,… , 𝜔𝑁}
is the diagonal matrix with diagonal elements 𝜔𝑛, 𝑛 = 1,… , 𝑁 . For a
matrix 𝑃 , the notation 𝑃 < 0 implies that 𝑃 is square, symmetric, and
negative-definite. Partial derivatives are denoted by indices, e.g., 𝑧𝑡 =
𝜕 𝑧∕𝜕 𝑡.

1.1. Preliminaries: 𝐻∞ control of finite-dimensional systems

Consider the LTI system

̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵 𝑢(𝑡) + 𝐸 𝑣(𝑡), 𝑥(0) = 0,
𝑦(𝑡) = 𝐶 𝑥(𝑡) +𝐷 𝑢(𝑡) (1)

with state 𝑥 ∈ R𝑛, control input 𝑢 ∈ R𝑚, disturbance 𝑣 ∈ R𝑘, controlled
utput 𝑦 ∈ R𝑙, and constant matrices 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸. We say that
= −𝐾 𝑥 with 𝐾 ∈ R𝑚×𝑛 guarantees that the 𝐿2 gain from 𝑣 to 𝑦 is not
reater than 𝛾 > 0 if the solutions of the closed-loop system satisfy

∫ ∞
0

[

|𝑦(𝑡)|2 − 𝛾2|𝑣(𝑡)|2
]

𝑑 𝑡 ≤ 0, ∀𝑣 ∈ 𝐿2([0,∞),R𝑘). (2)

That is, the 𝐻∞ norm of the closed-loop transfer function from 𝑣 to
𝑦 is not greater than 𝛾. The proofs of the following results are given,
e.g., in [2].

Proposition 1. Consider (1) such that 𝐷⊤𝐶 = 0 and 𝑅 = 𝐷⊤𝐷 > 0.
iven 𝛾 > 0, let 0 < 𝑃 ∈ R𝑛×𝑛 satisfy

𝑃 𝐴 + 𝐴⊤𝑃 − 𝑃 (𝐵 𝑅−1𝐵⊤ − 𝛾−2𝐸 𝐸⊤)𝑃 + 𝐶⊤𝐶 = 0. (3)

Then 𝑢(𝑡) = −𝑅−1𝐵⊤𝑃 𝑥(𝑡) guarantees (2).

Remark 1 (Solution Existence). If (𝐴, 𝐵) is stabilizable, (𝐴, 𝐶) is de-
tectable, and 𝛾 is large enough, then (3) has a solution. For this solution,
the closed-loop matrix 𝐴 − 𝐵 𝑅−1𝐵⊤𝑃 is stable.

Corollary 1 (Bounded Real Lemma). Consider (1) with 𝐵 = 0 and 𝐷 = 0
(i.e., without control). Given 𝛾 > 0, let 0 < 𝑃 ∈ R𝑛×𝑛 satisfy

𝑃 𝐴 + 𝐴⊤𝑃 + 𝛾−2𝑃 𝐸 𝐸⊤𝑃 + 𝐶⊤𝐶 = 0. (4)

Then (2) holds without control.
2 
2. Model description

2.1. Euler–Bernoulli beam with control and disturbance

We consider the Euler–Bernoulli beam described by
𝜇 ̃𝑧𝑡𝑡(𝑥, 𝑡) + 𝐸 𝐼 ̃𝑧𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝑐𝑣�̃�𝑡(𝑥, 𝑡) + 𝑐𝑘𝐼 ̃𝑧𝑥𝑥𝑥𝑥𝑡(𝑥, 𝑡) =

𝑐𝑎[𝛿′(𝑥 − �̃�𝐿) − 𝛿′(𝑥 − �̃�𝑅)]�̃�(𝑡) + �̃�(𝑥, 𝑡),
̃(0, 𝑡) = �̃�𝑥𝑥(0, 𝑡) = �̃�(𝐿, 𝑡) = �̃�𝑥𝑥(𝐿, 𝑡) = 0,

(5)

where �̃�∶ [0, 𝐿] × [0,∞) → R is the transverse deflection of a beam
of length 𝐿, linear density 𝜇, Young’s modulus of elasticity 𝐸, and
moment of inertia 𝐼 . The model accounts for the viscous damping 𝑐𝑣�̃�𝑡
and structural (Kelvin–Voigt) damping 𝑐𝑘𝐼 ̃𝑧𝑥𝑥𝑥𝑥𝑡 [44,45]. The external
isturbance is represented by �̃�∶ (0, 𝐿) × [0,∞) → R. All the parameters
re constant in time and space. The boundary conditions correspond to

the hinged ends.
A piezoelectric actuator produces bending moment on [�̃�𝐿, ̃𝑥𝑅] ⊂

0, 𝐿) proportional to the applied voltage �̃�∶ [0,∞) → R. Namely,
(𝑥, 𝑡) = 𝑐𝑎[ℎ(𝑥 − �̃�𝐿) − ℎ(𝑥 − �̃�𝑅)]�̃�(𝑡), where ℎ(𝑥) is the step function.

Since 𝑚(𝑥, 𝑡) contributes to the beam’s moment–curvature relationship,
t enters (5) through the Laplace operator: 𝑚𝑥𝑥(𝑥, 𝑡) = 𝑐𝑎[𝛿′(𝑥 − �̃�𝐿) −
𝛿′(𝑥− �̃�𝑅)]�̃�(𝑡), where 𝛿′( ⋅ − �̃�) ∈ 𝐻−2(0, 𝐿) is the derivative of the Dirac
delta function defined as

𝛿′(⋅ − �̃�)𝑓 = ∫

𝐿

0
𝛿′(𝑥 − �̃�)𝑓 (𝑥) 𝑑 𝑥 = −𝑓 ′(�̃�) (6)

for any �̃� ∈ (0, 𝐿) and 𝑓 ∈ 𝐻2(0, 𝐿). Note that it is natural for the
derivatives of 𝛿 to be of opposite signs since the piezoelectric patch
applies forces of opposite directions to its ends when it contracts or
expands. A more detailed study of piezoelectric actuators is provided
in [38,46,47].

Remark 2 (Damping Model). The Kelvin–Voigt damping is motivated
by the experimental observation that damping rates in beams increase

ith frequency [44]. This is also captured by the ‘‘square root’’ model
iven by −𝑐𝑟�̃�𝑥𝑥𝑡 [48]. Our analysis can be extended to the ‘‘square root’’

model straightforwardly.
By scaling the space and time as follows

𝑧(𝑥, 𝑡) = �̃�(𝑎1𝑥, 𝑎2𝑡), 𝑎1 =
𝐿
𝜋
, 𝑎2 = 𝑎21

√

𝜇
𝐸 𝐼 , (7)

we rewrite (5) as
𝑧𝑡𝑡 + 𝑧𝑥𝑥𝑥𝑥 + 𝑐1𝑧𝑡 + 𝑐2𝑧𝑥𝑥𝑥𝑥𝑡 =

[

𝛿′𝐿 − 𝛿′𝑅
]

𝑢 +𝑤,

𝑧(0, 𝑡) = 𝑧𝑥𝑥(0, 𝑡) = 𝑧(𝜋 , 𝑡) = 𝑧𝑥𝑥(𝜋 , 𝑡) = 0, (8)

where 𝑥 ∈ [0, 𝜋], 𝑡 ≥ 0,

𝑐1 =
𝑐𝑣𝑎2
𝜇

, 𝑐2 =
𝑐𝑘𝐼 𝑎2
𝜇 𝑎41

, 𝑥𝐿 =
�̃�𝐿
𝑎1

, 𝑥𝑅 =
�̃�𝑅
𝑎1

,

𝛿′𝐿 = 𝛿′
(

𝑥 − 𝑥𝐿
)

, 𝛿′𝑅 = 𝛿′
(

𝑥 − 𝑥𝑅
)

,

𝑢(𝑡) =
𝑐𝑎𝑎22
𝜇 𝑎21

�̃�(𝑎2𝑡), 𝑤(𝑥, 𝑡) =
𝑎22
𝜇
�̃�(𝑎1𝑥, 𝑎2𝑡).

Note that (6) implies 𝛿′(𝑎1𝑥 − �̃�) = 𝛿′(𝑥 − �̃�∕𝑎1)∕𝑎21. To simplify further
derivations, we assume that

𝑐1 + 𝑐2 ≤
√

2. (9)

That is, the dynamics are dominated by the elasticity rather than
damping. The extension to 𝑐1 + 𝑐2 >

√

2 is straightforward.

2.2. Well-posedness

Let 𝐻2
𝐵 𝐶 and 𝐻4

𝐵 𝐶 be the closure in 𝐻2 and 𝐻4, respectively, of all
unctions 𝑓 ∈ 𝐶∞[0, 𝜋] satisfying 𝑓 (2𝑘)(0) = 0 = 𝑓 (2𝑘)(𝜋) for all 𝑘 ≥ 0.
he energy space of (8) is

2 2
𝑋 = 𝐻𝐵 𝐶 (0, 𝜋) × 𝐿 (0, 𝜋)
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with the scalar product

⟨(𝑓1, 𝑔1), (𝑓2, 𝑔2)⟩𝑋 = ⟨𝑓 ′′
1 , 𝑓 ′′

2 ⟩𝐿2 + ⟨𝑔1, 𝑔2⟩𝐿2 .

Consider

0𝑓 = −𝑓 ′′, 𝐷(0) = 𝐻2
𝐵 𝐶 (0, 𝜋) ⊂ 𝐿2(0, 𝜋). (10)

In the operator form, (8) is written as
̇̄𝑧 = �̄� + 𝑓 , (11)

where

�̄�(𝑡) =
[

𝑧(⋅, 𝑡)
𝑧𝑡(⋅, 𝑡)

]

,  =
[

0 𝐼
−2

0 −(𝑐1𝐼 + 𝑐22
0)

]

,

𝑓 (𝑡) =
[

0
[𝛿′𝐿 − 𝛿′𝑅]𝑢(𝑡) +𝑤(⋅, 𝑡)

]

.

Since 𝐷(2
0) = 𝐻4

𝐵 𝐶 (0, 𝜋), we have

𝐷() = 𝑋1 = 𝐻4
𝐵 𝐶 (0, 𝜋) ×𝐻4

𝐵 𝐶 (0, 𝜋) ⊂ 𝑋 .
The adjoint of  with respect to the scalar product in 𝑋 is

∗ =
[

0 −𝐼
2

0 −(𝑐1𝐼 + 𝑐22
0)

]

, 𝐷(∗) = 𝑋1 ⊂ 𝑋 .

Both  and ∗ are dissipative. To see this, consider
⟨(𝑓 , 𝑔), (𝑓 , 𝑔)⟩𝑋 = ⟨(𝑔 ,−𝑓 (4) − 𝑐1𝑔 − 𝑐2𝑔

(4)), (𝑓 , 𝑔)⟩𝑋
= ⟨𝑔′′, 𝑓 ′′

⟩𝐿2 − ⟨𝑓 (4), 𝑔⟩𝐿2 − 𝑐1⟨𝑔 , 𝑔⟩𝐿2 − 𝑐2⟨𝑔
(4), 𝑔⟩𝐿2 .

For 𝑓 , 𝑔 ∈ 𝐻4
𝐵 𝐶 , integration by parts gives

⟨𝑓 (4), 𝑔⟩𝐿2 = ⟨𝑓 ′′, 𝑔′′⟩𝐿2 and ⟨𝑔(4), 𝑔⟩𝐿2 = ⟨𝑔′′, 𝑔′′⟩𝐿2 .

Substituting, we obtain

⟨(𝑓 , 𝑔), (𝑓 , 𝑔)⟩𝑋 = −𝑐1‖𝑔‖2𝐿2 − 𝑐2‖𝑔
′′
‖

2
𝐿2 ≤ 0.

Similarly,

⟨∗(𝑓 , 𝑔), (𝑓 , 𝑔)⟩𝑋 = −𝑐1‖𝑔‖2𝐿2 − 𝑐2‖𝑔
′′
‖

2
𝐿2 ≤ 0.

Since 𝐷() = 𝑋,  is closed, and  and ∗ are dissipative,  generates
𝐶0-semigroup of contractions on 𝑋 [49, Corollary 4.4].

The set 𝐷(∗) with the norm ‖𝑧‖𝐷 = ‖(𝛽 𝐼 −∗)𝑧‖𝑋 , where 𝛽 is
any regular point of  and 𝛽 is its complex conjugate, is a Hilbert
space [50, Proposition 2.10.1]. Its dual with respect to the pivot space
𝑋 is 𝑋−1 = 𝑌 ×𝐻−4

𝐵 𝐶 (0, 𝜋), where 𝑌 and 𝐻−4
𝐵 𝐶 are the dual spaces of 𝐻4

𝐵 𝐶
ith respect to 𝐻2 and 𝐿2, respectively.

We assume that

𝑤 ∈ 𝐻1
𝑙 𝑜𝑐 ((0,∞), 𝐻−4

𝐵 𝐶 (0, 𝜋)) ∩ 𝐿2((0,∞), 𝐿2(0, 𝜋)). (12)

The control input that we design later satisfies 𝑢 ∈ 𝐻1
𝑙 𝑜𝑐 ((0,∞),R). Since

𝐻4
𝐵 𝐶 ⊂ 𝐻2, we have 𝛿′𝐿, 𝛿′𝑅 ∈ 𝐻−4

𝐵 𝐶 ⊃ 𝐻−2. Since 𝛿′𝐿 and 𝛿′𝑅 are constant
in time, this implies

[𝛿′𝐿 − 𝛿′𝑅]𝑢 ∈ 𝐻1
𝑙 𝑜𝑐 ((0,∞), 𝐻−4

𝐵 𝐶 (0, 𝜋)).
Therefore, 𝑓 ∈ 𝐻1

𝑙 𝑜𝑐 ((0,∞), 𝑋−1). By [50, Theorem 4.1.6], for 𝑧(⋅, 0) ∈
2
𝐵 𝐶 (0, 𝜋) and 𝑧𝑡(⋅, 0) ∈ 𝐿2(0, 𝜋), there exists a unique solution of (11)

n 𝑋−1 that satisfies

�̄� ∈ 𝐶([0,∞), 𝑋) ∩ 𝐶1([0,∞), 𝑋−1).

Since �̄� = (𝑧, 𝑧𝑡)⊤, this implies

𝑧 ∈ 𝐶([0,∞), 𝐻2
𝐵 𝐶 (0, 𝜋)) and 𝑧𝑡 ∈ 𝐶([0,∞), 𝐿2(0, 𝜋)).

3. Robust state-feedback control of the beam

Given non-negative scalars 𝜌𝑥, 𝜌𝑢, and 𝛾, our objective is to find a
state-feedback control law guaranteeing that the trajectories of (8) with
𝑧(⋅, 0) ≡ 0 ≡ 𝑧𝑡(⋅, 0) satisfy (cf. (2))

𝐽 = ∫

∞[

‖𝑧(⋅, 𝑡)‖2 + 𝜌𝑥‖𝑧𝑥𝑥(⋅, 𝑡)‖2 + 𝜌𝑢𝑢
2(𝑡) − 𝛾2‖𝑤(⋅, 𝑡)‖2

]

𝑑 𝑡 ≤ 0 (13)

0 b

3 
for all 𝑤 satisfying (12). Such control guarantees that the 𝐿2 gain is not
reater than 𝛾. Using (7), one can rewrite (13) in terms of the original

state, input, and disturbance with �̃�𝑥 = 𝜌𝑥𝑎41, �̃�𝑢 = 𝜌𝑢
𝑐2𝑎𝑎

4
2

𝜇2𝑎31
, and �̃� = 𝛾

𝑎22
𝜇 .

Remark 3 (Performance Index). Since the potential energy of (5) due to
bending is 𝐸 𝐼

2 ‖�̃�𝑥𝑥(⋅, 𝑡)‖2 [51, p. 317], we include ‖𝑧𝑥𝑥(⋅, 𝑡)‖2 in (13).
he kinetic energy of (5) is 𝜇

2 ‖�̃�𝑡(⋅, 𝑡)‖2, and it is natural to include
𝑧𝑡(⋅, 𝑡)‖2 in (13). To simplify the exposition, we do not present this

extension, which requires one to consider multiple cases depending on
the values of 𝑐1, 𝑐2, 𝜌𝑥, and 𝜌𝑢.

3.1. Modal decomposition

The modes and natural frequencies of (8) are

𝜑𝑛(𝑥) =
√

2∕𝜋 sin 𝑛𝑥, 𝜔𝑛 = 𝑛2, 𝑛 ∈ N.

These are the eigenfunctions and eigenvalues of 0 defined in (10),
hich form a complete orthonormal system in 𝐿2(0, 𝜋). Therefore,

𝑧(⋅, 𝑡) 𝐿2
=

∞
∑

𝑛=1
𝑧𝑛(𝑡)𝜑𝑛, 𝑧𝑛(𝑡) = ⟨𝑧(⋅, 𝑡), 𝜑𝑛⟩.

Substituting this into (8), in view of

⟨𝛿′𝐿, 𝜑𝑛⟩
(6)
= −𝜑′

𝑛(𝑥𝐿) and ⟨𝛿′𝑅, 𝜑𝑛⟩
(6)
= −𝜑′

𝑛(𝑥𝑅),

we obtain the ODEs for the Fourier coefficients

�̈�𝑛(𝑡) + 2𝜁𝑛𝜔𝑛�̇�𝑛(𝑡) + 𝜔2
𝑛𝑧𝑛(𝑡) = 𝑏𝑛𝑢(𝑡) +𝑤𝑛(𝑡), 𝑛 ∈ N,

where
𝜁𝑛 = (𝑐1𝜔−1

𝑛 + 𝑐2𝜔𝑛)∕2,

𝑏𝑛 = 𝑛
√

2∕𝜋
(

cos 𝑛𝑥𝑅 − cos 𝑛𝑥𝐿
)

,

𝑛(𝑡) = ⟨𝑤(⋅, 𝑡), 𝜑𝑛⟩ .

The ODEs can be written as
̇̄ 𝑛(𝑡) = 𝐴𝑛�̄�𝑛(𝑡) + 𝐵𝑛𝑢(𝑡) + 𝐸𝑛𝑤𝑛(𝑡), 𝑛 ∈ N, (14)

where

̄𝑛 =
[

𝑧𝑛
�̇�𝑛

]

, 𝐴𝑛 =
[

0 1
−𝜔2

𝑛 −2𝜁𝑛𝜔𝑛

]

, 𝐵𝑛 =
[

0
𝑏𝑛

]

, 𝐸𝑛 =
[

0
1

]

.

The eigenvalues of 𝐴𝑛 are

𝜆∓𝑛 = −𝜔𝑛(𝜁𝑛 ±
√

𝜁2𝑛 − 1). (15)

Without damping (𝜁𝑛 = 0), infinitely many imaginary roots 𝜆±𝑛 = ±𝑖𝜔𝑛
(see Fig. 1 ) give rise to free vibrations in (8) in the absence of control
and disturbance. Our approach does not work in this case since it is not
nough to deal only with a finite number of modes. Viscous damping
𝑐1 ≠ 0) ensures that Re 𝜆±𝑛 = −𝑐1∕2. Kelvin–Voigt damping (𝑐2 ≠ 0)
mproves the stability further guaranteeing

Re 𝜆−𝑛 → −∞ and Re 𝜆+𝑛 → −1∕𝑐2.

We develop our approach for the case when 𝑐1 ≠ 0 ≠ 𝑐2.

3.2. The spillover phenomenon

It is common in engineering practice to design controllers based on
 few dominating modes while ignoring the residue. This subsection
emonstrates that such an approach may suffer from the spillover
henomenon.

Consider the Euler–Bernoulli beam (8) with

𝑐1 = 1.4 × 10−3, 𝑐2 = 1.3 × 10−3, 𝑥𝐿 = 0.91, 𝑥𝑅 = 0.97.
The choice of the parameters is explained in Section 4. Let us try to
design a controller guaranteeing (13) with 𝜌𝑥 = 0.1 and 𝜌𝑢 = 10−3
y considering only 5 modes in the modal decomposition (14). Using
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Fig. 1. The eigenvalues of 𝐴𝑛 given in (15) for 𝑛 = 1,… , 50. Red dots — no damping
(𝑐1 = 0 = 𝑐2); blue dots — viscous damping (𝑐1 = 1.4 × 10−3, 𝑐2 = 0); green dots —
viscous and Kelvin–Voigt damping (𝑐1 = 1.4 × 10−3, 𝑐2 = 1.3 × 10−3). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 2. The value of 𝐽𝑁 (𝑡), defined in (16), for 𝑁 = 5 (blue), 𝑁 = 6 (green), and
𝑁 = 50 (red). The black line is 𝐽𝑁 (𝑡) for 𝑁 = 50 and 𝑢 ≡ 0. A controller designed for
the first 5 modes cannot guarantee (13) for the original system because of the spillover
phenomenon. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Proposition 1 (see Section 3.5 for details), we find 𝛾 ≈ 6.97 and the
corresponding controller gain −𝑅−1𝐵⊤𝑃 ∈ R1×10.

Fig. 2 shows the values of

𝐽𝑁 (𝑡) = ∫ 𝑡
0

[

∑𝑁
𝑛=1

[

(1 + 𝜌𝑥𝜔2
𝑛)𝑧

2
𝑛(𝑡) − 𝛾2𝑤2

𝑛(𝑡)
]

+ 𝜌𝑢𝑢2(𝑡)
]

𝑑 𝑡 (16)

for different numbers of modes, 𝑁 . Proposition 1 guarantees 𝐽5(𝑡) ≤ 0
(blue line). However, if we include one more mode without adjusting
𝛾 and the controller, then

𝐽6(𝑡) = 𝐽5(𝑡) + ∫ 𝑡
0
[

(1 + 𝜌𝑥𝜔2
6)𝑧

2
6(𝑡) − 𝛾2𝑤2

6(𝑡)
]

𝑑 𝑡
becomes positive for 𝑡 > 20 (green line). This happens because the
𝐿2 gain for the additional mode with 𝑛 = 6 is greater than 𝛾 and the
additional integral term is positive. The red line shows 𝐽50(𝑡) ≈ 𝐽∞(𝑡),
which is the cost when all the modes are considered. Clearly, the
controller designed using only 5 modes cannot guarantee (13) for the
original system.

Spillover occurs because the effect of the controller on the truncated
modes is ignored. In the remainder of the paper, we provide a simple
remedy to avoid spillover. Namely, we show how to modify 𝜌𝑢 in (16)
so that a controller guaranteeing 𝐽𝑁 (𝑡) ≤ 0 for a given 𝑁 will guarantee
(13) with the original 𝜌𝑢.

3.3. Cost decomposition

We represent (14) as

̇𝑁 = 𝐴𝑧𝑁 + 𝐵 𝑢 + 𝐸 𝑤𝑁 , (17a)
̇̄𝑧 = 𝐴 �̄� + 𝐵 𝑢 + 𝐸 𝑤 , 𝑛 > 𝑁 , (17b)
𝑛 𝑛 𝑛 𝑛 𝑛 𝑛

4 
where 𝑁 ∈ N,

𝑧𝑁 =

⎡

⎢

⎢

⎢

⎣

𝑧1
⋮
𝑧𝑁
�̇�1
⋮
�̇�𝑁

⎤

⎥

⎥

⎥

⎦

, 𝑤𝑁 =
[ 𝑤1

⋮
𝑤𝑁

]

, 𝐵 =

⎡

⎢

⎢

⎢

⎣

0
⋮
0
𝑏1
⋮
𝑏𝑁

⎤

⎥

⎥

⎥

⎦

, 𝐸 =
[

0𝑁
𝐼𝑁

]

,

𝐴 =
[ 0𝑁 𝐼𝑁

−𝛺2
𝑁 −

(

𝑐1𝐼𝑁+𝑐2𝛺2
𝑁

)

]

, 𝛺𝑁 = diag{𝜔1,… , 𝜔𝑁},

(18)

and the remaining notations are from (14). We will design an 𝐻∞
controller for (17a) with the cost, 𝐽0, that accounts for its effect on
(17b). To find this cost, we decompose the original cost 𝐽 from (13).
Namely, since 𝑧(⋅, 𝑡) ∈ 𝐻2(0, 𝜋) (see Section 2.2), Parseval’s identity
gives

‖𝑧(⋅, 𝑡)‖2 =
∞
∑

𝑛=1
𝑧2𝑛(𝑡), ‖𝑧𝑥𝑥(⋅, 𝑡)‖2 =

∞
∑

𝑛=1
𝜔2
𝑛𝑧

2
𝑛(𝑡).

Our key idea is to represent 𝐽 from (13) as

𝐽 = 𝐽0 +
∑∞

𝑛=𝑁+1 𝐽𝑛, (19)

where

𝐽0 = ∫

∞

0

[ 𝑁
∑

𝑛=1
(1 + 𝜌𝑥𝜔

2
𝑛)𝑧

2
𝑛(𝑡) +

(

𝜌𝑢 +
∞
∑

𝑛=𝑁+1
𝜌𝑛

)

𝑢2(𝑡) − 𝛾2
𝑁
∑

𝑛=1
𝑤2

𝑛(𝑡)

]

𝑑 𝑡,

𝐽𝑛 = ∫

∞

0

[

(1 + 𝜌𝑥𝜔
2
𝑛)𝑧

2
𝑛(𝑡) − 𝜌𝑛𝑢

2(𝑡) − 𝛾2𝑤2
𝑛(𝑡)

]

𝑑 𝑡.

The control, 𝑢(𝑡), is treated as a disturbance in (17b). Using the bounded
real lemma (Corollary 1), we will find the minimum 𝜌𝑛 such that 𝐽𝑛 ≤ 0
for the zero initial conditions and any 𝑤𝑛 ∈ 𝐿2([0,∞),R). Then, we
will show that ∑∞

𝑛=𝑁+1 𝜌𝑛 < ∞ and construct a controller for (17a)
guaranteeing 𝐽0 ≤ 0.

3.4. Bounded real lemma for the residue

For a given 𝑛 > 𝑁 , (17b) can be represented as (1) with

𝑥 = �̄�𝑛, 𝐴 = 𝐴𝑛, 𝐵 = 02×1, 𝑣 =
[
√

𝜌𝑛𝑢∕𝛾
𝑤𝑛

]

, 𝐸 =
[ 𝛾
√

𝜌𝑛
𝐵𝑛 𝐸𝑛

]

.

Note that the control input, 𝑢, is considered as a part of the disturbance,
𝑣, since the 𝐻∞ control will be designed based on (17a). The cost in
(2) coincides with 𝐽𝑛 for

𝐶 =
[√

1 + 𝜌𝑥𝜔2
𝑛 0

]

and 𝐷 = 0.
Then, the algebraic Riccati Eq. (4) takes the form

𝑃𝑛𝐴𝑛 + 𝐴⊤
𝑛 𝑃𝑛 + 𝛾−2𝑃𝑛

[ 0 0

0 1+𝛾2𝑏2𝑛∕𝜌𝑛
]

𝑃𝑛 +
[

1+𝜌𝑥𝜔2
𝑛 0

0 0

]

= 0. (20)

In Appendix A, we show that the smallest 𝜌𝑛 guaranteeing the feasibility
of (20) is

𝜌𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏2𝑛(1 + 𝜌𝑥𝜔2
𝑛)

4𝜔4
𝑛𝜁2𝑛 (1 − 𝜁2𝑛 ) − (1 + 𝜌𝑥𝜔2

𝑛)𝛾−2
if 2𝜁2𝑛 ≤ 1,

𝑏2𝑛(1 + 𝜌𝑥𝜔2
𝑛)

𝜔4
𝑛 − (1 + 𝜌𝑥𝜔2

𝑛)𝛾−2
if 2𝜁2𝑛 > 1.

The value of 𝜌𝑛 is the 𝐿2 gain from 𝑢 to �̄�𝑛. Corollary 1 guarantees
𝐽𝑛 ≤ 0 for these 𝜌𝑛. This can be used to obtain the 𝐿2 gain of (8) without
control.

Proposition 2 (𝐿2 Gain without Control). The 𝐿2 gain of the control-free
(8) subject to (9) is not greater than

𝛾0 =
2
√

1 + 𝜌𝑥
(𝑐1 + 𝑐2)

√

4 − (𝑐1 + 𝑐2)2
.

Proof. Repeating the arguments of Appendix A with 𝛼𝑛 = 𝛾−2, we obtain
that (20) is feasible for any 𝑛 ∈ N if

𝛾2 ≥
1 + 𝜌𝑥𝜔2

𝑛
4 2 2

when 2𝜁2𝑛 ≤ 1, (21a)

4𝜔𝑛𝜁𝑛 (1 − 𝜁𝑛 )
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𝛾2 ≥
1 + 𝜌𝑥𝜔2

𝑛

𝜔4
𝑛

when 2𝜁2𝑛 > 1. (21b)

The right-hand sides of (21) are decreasing in 𝑛. Moreover,

𝜔4
𝑛 − 4𝜔4

𝑛𝜁
2
𝑛 (1 − 𝜁2𝑛 ) = 𝜔4

𝑛(1 − 2𝜁2𝑛 )2 ≥ 0

implies that the bound in (21a) is not smaller than in (21b). Since (9)
uarantees 2𝜁21 ≤ 1, the lower bound on 𝛾 is obtained from (21a) with
= 1, i.e., with 𝜔1 = 1 and 𝜁1 = (𝑐1 + 𝑐2)∕2. The feasibility of (20)

mplies 𝐽𝑛 ≤ 0. Taking 𝑁 = 0 and 𝐽0 = 0 in (19), we obtain 𝐽 ≤ 0. □

In Appendix B, we show that
∞
∑

𝑛=𝑁+1
𝜌𝑛 ≤ 𝜌∞ =

𝑀
∑

𝑛=𝑁+1
𝜌𝑛 + 𝐶𝑀

[

|𝑥𝑅 − 𝑥𝐿| −
𝑀
∑

𝑛=1

𝑏2𝑛
𝜔2
𝑛

]

, (22)

where

𝐶𝑀 =
𝜔2
𝑀+1(1 + 𝜌𝑥𝜔2

𝑀+1)

𝜔4
𝑀+1 − (1 + 𝜌𝑥𝜔2

𝑀+1)𝛾
−2

,

𝑀 = max

⎧

⎪

⎨

⎪

⎩

𝑁 ,
⎢

⎢

⎢

⎣

√

√

√

√

1 +√

1 − 2𝑐1𝑐2
√

2𝑐2

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

.

Here, ⌊⋅⌋ stands for the integer part. Note that (9) implies 2𝑐1𝑐2 ≤ 1.
As explained in Appendix B, ∑∞

𝑛=1 𝑏
2
𝑛∕𝜔

2
𝑛 = |𝑥𝑅 − 𝑥𝐿|. Therefore,

𝜌∞ → 0 monotonically as 𝑁 → ∞. That is, by considering more modes
in the control design, we reduce the 𝐿2 gain of the residue associated
with the spillover.

3.5. 𝐻∞ controller design without spillover

The system (17a) is in the form of (1) with 𝑥 = 𝑧𝑁 , 𝑣 = 𝑤𝑁 , and 𝐴,
, and 𝐸 defined in (18). Taking

𝐶 =
[

√

𝐼𝑁+𝜌𝑥𝛺2
𝑁 0𝑁×𝑁

01×𝑁 01×𝑁

]

and 𝐷 =
[ 0𝑁×1
√

𝜌𝑢+𝜌∞

]

, (23)

we obtain that 𝐷⊤𝐶 = 0, 𝑅 = 𝐷⊤𝐷 = 𝜌𝑢+𝜌∞ > 0, and the left-hand side
of (2) coincides with 𝐽0 from (19). By Proposition 1, if 0 < 𝑃 ∈ R2𝑁×2𝑁

satisfies (3), then

𝑢(𝑡) = −(𝜌𝑢 + 𝜌∞)−1𝐵⊤𝑃 𝑧𝑁 (𝑡) (24)

guarantees 𝐽0 ≤ 0. Since 𝜌𝑛 were chosen so that 𝐽𝑛 ≤ 0, we obtain that
𝐽 ≤ 0.

Note that (12) implies 𝑤𝑁 ∈ 𝐿2(0,∞). Therefore, the solution of
he stable system (17a), (24) satisfies 𝑧𝑁 ∈ 𝐿2(0,∞). That is, the right-

hand side of (17a) is from 𝐿2, meaning that �̇�𝑁 ∈ 𝐿2(0,∞), and both
𝑧𝑁 ∈ 𝐻1(0,∞) and 𝑢 ∈ 𝐻1(0,∞). This is the property we used in
the well-posedness analysis of Section 2.2. Summarizing, we have the
following result.

Theorem 1. Consider the Euler–Bernoulli beam (8) subject to (9) and its
modal decomposition (17) with some 𝑁 ∈ N. Given non-negative 𝜌𝑥, 𝜌𝑢,
and 𝛾, let 𝜌∞ be given by (22). If 0 < 𝑃 ∈ R2𝑁×2𝑁 satisfies the algebraic

iccati Eq. (3) with 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 given in (18) and (23), then the
tate feedback (24) guarantees that the 𝐿2 gain of (8) is not greater than
𝛾, that is, (13) holds for 𝑧(⋅, 0) ≡ 0 ≡ 𝑧𝑡(⋅, 0) and any 𝑤 satisfying (12).

Proof. Let 𝑀 be as defined below (22). Consider

𝑉 = (𝑧𝑁 )⊤𝑃 𝑧𝑁 +
∑∞

𝑛=𝑁+1 �̄�
⊤
𝑛 𝑃𝑛�̄�𝑛

with 𝑃𝑛 defined by (A.3) for 𝑁 + 1 ≤ 𝑛 ≤ 𝑀 and by (A.4) for 𝑛 > 𝑀 .
he series converges since

𝑃𝑛 ∼ 𝜌𝑥

[

𝜔2
𝑛𝑐2 1

1 2𝑐2

]

as 𝑛 → ∞ (25)

(we chose ‘‘+ ’’ for the right bottom element), while 𝑧(⋅, 𝑡) ∈ 𝐻2(0, 𝜋)
and 𝑧𝑡(⋅, 𝑡) ∈ 𝐿2(0, 𝜋) (see Section 2.2). Let 𝐽 (𝑡) be 𝐽 as defined in
(13) but with ∞ replaced by 𝑡. Calculating the derivative along the
5 
trajectories of (17) and using the relation 𝜌𝑢 +
∑∞

𝑁+1 𝜌𝑛 ≤ 𝜌𝑢 + 𝜌∞ = 𝑅,
e obtain

�̇� (𝑡) + �̇� (𝑡) ≤ 2(𝑧𝑁 )⊤𝑃 [𝐴𝑧𝑁 + 𝐵 𝑢 + 𝐸 𝑤𝑁 ]

+ (𝑧𝑁 )⊤𝐶⊤𝐶 𝑧𝑁 + 𝑅𝑢2 − 𝛾2|𝑤𝑁
|

2

+ 2∑∞
𝑛=𝑁+1 �̄�

⊤
𝑛 𝑃𝑛[𝐴𝑛�̄�𝑛 + 𝐵𝑛𝑢 + 𝐸𝑛𝑤𝑛]

+
∑∞

𝑛=𝑁+1[(1 + 𝜌𝑥𝜔2
𝑛)𝑧

2
𝑛 − 𝜌𝑛𝑢2 − 𝛾2𝑤2

𝑛].

Completing the squares, we find

2(𝑧𝑁 )⊤𝑃 𝐵 𝑢 + 𝑅𝑢2 = |𝑅− 1
2 𝐵⊤𝑃 𝑧𝑁 + 𝑅

1
2 𝑢|2 − (𝑧𝑁 )⊤𝑃 𝐵 𝑅−1𝐵⊤𝑃 𝑧𝑁 ,

(𝑧𝑁 )⊤𝑃 𝐸 𝑤𝑁 − 𝛾2|𝑤𝑁
|

2 = 𝛾−2|𝐸⊤𝑃 𝑧𝑁 |

2 − |𝛾−1𝐸⊤𝑃 𝑧𝑁 − 𝛾 𝑤𝑁
|

2,

�̄�⊤𝑛 𝑃𝑛𝐵𝑛𝑢 − 𝜌𝑛𝑢
2 = 𝜌−1𝑛 |𝐵⊤

𝑛 𝑃𝑛�̄�𝑛|
2 − |𝜌

− 1
2

𝑛 𝐵⊤
𝑛 𝑃𝑛�̄�𝑛 − 𝜌

1
2
𝑛 𝑢|2,

2�̄�⊤𝑛 𝑃𝑛𝐸𝑛𝑤𝑛 − 𝛾2𝑤2
𝑛 = 𝛾−2|𝐸⊤

𝑛 𝑃𝑛�̄�𝑛|
2 − |𝛾−1𝐸⊤

𝑛 𝑃𝑛�̄�𝑛 − 𝛾 𝑤𝑛|
2.

(26)

In view of (3) and (20), these lead to
�̇� (𝑡) + �̇� (𝑡) ≤ |𝑅− 1

2 𝐵⊤𝑃 𝑧𝑁 + 𝑅
1
2 𝑢|2 − |𝛾−1𝐸⊤𝑃 𝑧𝑁 − 𝛾 𝑤𝑁

|

2

−
∞
∑

𝑛=𝑁+1

[

|𝜌
− 1

2
𝑛 𝐵⊤

𝑛 𝑃𝑛�̄�𝑛 − 𝜌
1
2
𝑛 𝑢|2 + |𝛾−1𝐸⊤

𝑛 𝑃𝑛�̄�𝑛 − 𝛾 𝑤𝑛|
2
]

.

Substituting 𝑢 from (24), we obtain

�̇� (𝑡) + �̇� (𝑡) ≤ 0. (27)

Integrating the above from 0 to 𝑡, we obtain

𝑉 (𝑡) − 𝑉 (0) + 𝐽 (𝑡) − 𝐽 (0) ≤ 0.

Given that 𝑉 (0) = 0 for the zero initial conditions, and 𝐽 (0) = 0, we
have 𝐽 (𝑡) ≤ −𝑉 (𝑡) ≤ 0, which implies (13). □

Remark 4 (Internal Stability). The designed feedback (24) renders (8)
internally stable in the norm

‖𝑧(⋅, 𝑡)‖2𝑋 = ‖𝑧𝑥𝑥(⋅, 𝑡)‖2 + ‖𝑧𝑡(⋅, 𝑡)‖2.
Indeed, (25) implies the existence of positive 𝜀1 and 𝜀2 such that
𝜀1‖𝑧(⋅, 𝑡)‖2𝑋 ≤ 𝑉 ≤ 𝜀2‖𝑧(⋅, 𝑡)‖2𝑋 , and (27) implies �̇� ≤ 0 for 𝑤(⋅, 𝑡) ≡ 0.

Remark 5 (Solution Existence). Since 𝐴, defined in (18), is Hurwitz,
𝐴, 𝐵) is stabilizable. It is easy to check that (𝐴, 𝐶) is observable, hence
etectable. As mentioned in Remark 1, this guarantees that (3) has a

solution for a large enough 𝛾. That is, the conditions of Theorem 1 hold
or any 𝑁 ∈ N and large enough 𝛾.

Remark 6 (Number of Modes and the 𝐿2 Gain). When 𝑁 grows, 𝛾 can
nly decrease. Indeed, we know that 𝐽𝑁+1(𝑡) ≤ 0 and (24) guarantees
0(𝑡) ≤ 0 with 𝐽𝑁+1(𝑡) and 𝐽0(𝑡) defined below (19). Taking 𝐾1, 𝐾2 ∈

R1×𝑁 such that [𝐾1 𝐾2] = (𝜌𝑢 + 𝜌∞)−1𝐵⊤𝑃 , we have that

𝑢 = − [

𝐾1 0 𝐾2 0
]

𝑧𝑁+1

guarantees 𝐽0(𝑡) = 𝐽0(𝑡) + 𝐽𝑁+1(𝑡) ≤ 0. Note that 𝐽0(𝑡) is 𝐽0(𝑡) with 𝑁
eplaced by 𝑁 + 1. By [2, Theorem 6.3.6], (3) has a solution for the

matrices defined in (18) and (23) with 𝑁 replaced by 𝑁 + 1. That is,
he same 𝛾 is achievable with 𝑁 + 1 modes. When considering 𝑁 + 1
odes, we are making the sum 𝐽0(𝑡) + 𝐽𝑁+1(𝑡) negative instead of each

erm, 𝐽0(𝑡) and 𝐽𝑁+1(𝑡), independently. This gives more flexibility and
ay reduce 𝛾, as demonstrated in Fig. 3.

4. Numerical simulations

As an example, we consider an aluminum rectangular beam of
dimensions 1 m × 0.1 m × 0.01 m with hinged ends and a piezoelectric
actuator of length 2 cm placed at 30 cm from the left edge. This system
can be modeled by (5) with the parameters given in the following table:
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Fig. 3. The 𝐿2 gain of the Euler–Bernoulli beam (8) for different numbers of controlled
modes 𝑁 .

Linear density 𝜇 2.71 kg/m
Young’s modulus 𝐸 70 × 109 N/m2

Moment of inertia 𝐼 8.3 × 10−8 m4

Viscous damping 𝑐𝑣 1.76 kg∕(m s)
Structural damping 𝑐𝑘 2.05 × 105 kg∕(m s)
Left actuator position �̃�𝐿 0.29 m
Right actuator position �̃�𝑅 0.31 m

The linear density is calculated as 𝜇 = 𝜌𝐴, where 𝜌 = 2710 k g∕m3

is the density of aluminum, and 𝐴 = 0.1 × 0.01 = 10−3 m2 is the cross-
section area of the beam. The damping coefficients, 𝑐𝑣 and 𝑐𝑘, are taken
from [52]. The value of 𝑐𝑎 depends on the type of the piezoelectric
patch; it does not affect the performance analysis since the control can
be scaled as �̃�′ = 𝑐𝑎�̃�. After the change of variables (7), we obtain (8)
with

𝑐1 = 1.4 × 10−3, 𝑐2 = 1.3 × 10−3, 𝑥𝐿 = 0.91, 𝑥𝑅 = 0.97.
Our objective is to design a state-feedback control law of the form (24)
guaranteeing that the solution of (8) with 𝑧(⋅, 0) ≡ 0 ≡ 𝑧𝑡(⋅, 0) satisfies
(13) with 𝜌𝑢 = 10−3, 𝜌𝑥 = 0.1, and smallest possible 𝛾 > 0. To decide on
how many modes to consider in the controller design, we calculate the
minimum 𝛾 for different numbers of controlled modes, 𝑁 . Proposition 2
gives 𝛾0 ≈ 380 as the smallest 𝐿2 gain without control. For each integer
𝑁 ∈ [1, 40], we found the minimum 𝛾 satisfying the conditions of
Theorem 1. The results are shown in Fig. 3. As explained in Remark 6,
the 𝐿2 gain decreases when more modes are considered. The limit value
is 𝛾 ≈ 18. Since 𝛾 does not improve significantly for 𝑁 > 8, we consider
𝑁 = 8 modes. In this case, 𝛾 ≈ 20.2 and 𝜌∞ ≈ 8 × 10−3, which we found
using (22). To find the controller gain in (24), we solve (3) for 𝑃 > 0
with 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 defined in (18) and (23). Note that, for this
example, the first condition in (15) of [35] requires 𝑁 ≥ 32 and the
resulting LMIs are not feasible for any 𝛾 > 0.

The results of numerical simulations without and with control for
the same disturbance are shown in Fig. 4. To generate the disturbance,
we calculated 𝑃 > 0 satisfying (4) with 𝐴, 𝐸, and 𝐶 given in (18)
and (23), found 𝑧𝑁𝑑 (𝑡) as the solution of (17a) with 𝑁 = 30, 𝑢 ≡ 0,
and 𝑧𝑁𝑑 (0) = [1,… , 1]⊤ ∈ R60, substituted 𝑤𝑁 (𝑡) = 𝛾−2𝐸⊤𝑃 𝑧𝑁𝑑 (𝑡) into
(18), and took 𝑤(𝑥, 𝑡) = ∑𝑁

𝑛=1 𝑤𝑛(𝑡)𝜑𝑛(𝑥). The value of 𝑤𝑁 was selected
to maximizes the related negative term in (26). Clearly, the proposed
control strategy attenuates the effect of the disturbance. This is also
evident from Fig. 5, which shows

‖𝑧(⋅, 𝑡)‖𝐽 =
√

‖𝑧(⋅, 𝑡)‖2 + 𝜌𝑥‖𝑧𝑥𝑥(⋅, 𝑡)‖2 (28)

without (black) and with (blue) control.
The value of 𝐽 (𝑡), obtained by replacing ∞ with 𝑡 in (13), is shown

in Fig. 6. As guaranteed by Theorem 1, the control ensures that 𝐽 =
lim𝑡→∞ 𝐽 (𝑡) < 0 for 𝛾 ≈ 20.2 (blue line). Without control (black line), 𝐽 (𝑡)
becomes positive for 𝑡 ≈ 70. If the residue is ignored (𝜌∞ = 0), a smaller
𝛾 ≈ 7.16 is obtained following the steps detailed in Section 3.2. In this
case, the spillover phenomenon causes 𝐽 (𝑡) > 0 for 𝑡 > 7 (red line).
This vividly demonstrates why the residue, i.e., the modes with 𝑛 > 𝑁 ,
must not be ignored. Theorem 1 provides a simple way of designing a
controller avoiding the spillover phenomenon.
6 
Fig. 4. Euler–Bernoulli beam without and with control. The red dashed lines show the
ends of the piezoelectric actuator.

Fig. 5. The value of ‖𝑧(⋅, 𝑡)‖𝐽 , defined in (28), without (black) and with (blue) control.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. The value of 𝐽 (𝑡) (given by (13) with ∞ replaced by 𝑡) without control (black)
and with control (blue) for 𝛾 ≈ 20.2. The red line shows the spillover phenomenon
occurring when the modes with 𝑛 > 8 are ignored. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Remark 7 (𝑁 vs 𝛾 with spillover). If the residue is ignored (𝜌∞ = 0),
then 𝛾 ≈ 6.97 for 𝑁 = 5 (see Section 3.2) and 𝛾 ≈ 7.16 for 𝑁 = 8 (as
explained above). That is, the 𝐿2 gain may increase when more modes
are considered. This happens because, by increasing 𝑁 , one obtains
a more accurate estimate of the actual 𝐿2 gain, which is larger than
that obtained using the truncated modal decomposition. If the residue
is accounted for, larger 𝑁 will never lead to a larger 𝛾 (see Remark 6).

5. Conclusions

We studied the 𝐻∞ control of the Euler–Bernoulli beam with viscous
and Kelvin–Voigt damping using piezoelectric actuators. We showed
that spillover occurs when a finite number of modes are considered
in the 𝐻∞ design. Then we proposed a simple modification of the cost
guaranteeing that the controller designed based on a finite number of
modes does not lead to spillover. Using a realistic model of the beam,
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we demonstrated how to find the number of modes required to design a
controller, i.e., such that a further increase of the number of considered
modes does not improve the 𝐿2 gain significantly.
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Appendix A. Solution of (20)

Let 𝑃𝑛 =
[ 𝑝1 𝑝2
𝑝2 𝑝3

]

. Then (20) is equivalent to
𝛼𝑛𝑝

2
2 − 2𝜔2

𝑛𝑝2 + (1 + 𝜌𝑥𝜔
2
𝑛) = 0,

𝑝1 − 2𝜁𝑛𝜔𝑛𝑝2 − 𝑝3𝜔
2
𝑛 + 𝛼𝑛𝑝2𝑝3 = 0,

𝛼𝑛𝑝
2
3 − 4𝜁𝑛𝜔𝑛𝑝3 + 2𝑝2 = 0

with 𝛼𝑛 = 𝑏2𝑛∕𝜌𝑛 + 𝛾−2. These are equivalent to
𝑝2 = 𝛼−1𝑛

[

𝜔2
𝑛 ±

√

𝜔4
𝑛 − 𝛼𝑛(1 + 𝜌𝑥𝜔2

𝑛)
]

,

𝑝3 = 𝛼−1𝑛

[

2𝜁𝑛𝜔𝑛 ±
√

4𝜁2𝑛𝜔2
𝑛 − 2𝛼𝑛𝑝2

]

,

1 = 2𝜁𝑛𝜔𝑛𝑝2 + 𝑝3𝜔
2
𝑛 − 𝛼𝑛𝑝2𝑝3.

(A.1)

These values are real if and only if
𝜔4
𝑛 ≥ 𝛼𝑛(1 + 𝜌𝑥𝜔

2
𝑛) and (A.2a)

2𝜁2𝑛𝜔
2
𝑛 ≥ 𝛼𝑛𝑝2 = 𝜔2

𝑛−
√

𝜔4
𝑛−𝛼𝑛(1 +𝜌𝑥𝜔2

𝑛). (A.2b)

We took 𝑝2 with ‘‘−’’ since 2𝜁2𝑛 can be smaller than 1.
To minimize 𝜌𝑛, we maximize 𝛼𝑛. If 2𝜁2𝑛 < 1, then (A.2b) gives the

maximum 𝛼𝑛 = 4𝜔4
𝑛𝜁

2
𝑛 (1 − 𝜁2𝑛 )∕(1 + 𝜌𝑥𝜔2

𝑛), which satisfies (A.2a) since
4
𝑛 − 𝛼𝑛(1 + 𝜌𝑥𝜔2

𝑛) = 𝜔4
𝑛(1 − 2𝜁2𝑛 )2 > 0. Substituting this into (A.1), we

obtain

𝑃𝑛 =
2𝜁𝑛𝜔𝑛
𝛼𝑛

[

𝜔2
𝑛 𝜁𝑛𝜔𝑛

𝜁𝑛𝜔𝑛 1

]

> 0. (A.3)

If 2𝜁2𝑛 ≥ 1, then (A.2b) is true subject to (A.2a), which gives 𝛼𝑛 =
𝜔4
𝑛∕(1 + 𝜌𝑥𝜔2

𝑛). Substituting this into (A.1), we obtain

𝑃𝑛 =
𝜔𝑛
𝛼𝑛

[

2𝜁𝑛𝜔2
𝑛 𝜔𝑛

𝜔𝑛 2𝜁𝑛±
√

4𝜁2𝑛−2

]

> 0. (A.4)

The minimum values of 𝜌𝑛 are calculated from 𝛼𝑛 = 𝑏2𝑛∕𝜌𝑛 + 𝛾−2 with
the corresponding 𝛼 .
𝑛

7 
Appendix B. Upper bound on the 𝑳𝟐 gain for the residue

For 𝑛 > 𝑀 , we have 𝜁𝑛 ≥ 1∕
√

2. Then

𝜌𝑛 =
𝑏2𝑛(1+𝜌𝑥𝜔

2
𝑛)

𝜔4
𝑛−(1+𝜌𝑥𝜔2

𝑛)𝛾−2
= 𝜔−2

𝑛 +𝜌𝑥
1−(𝜔−2

𝑛 +𝜌𝑥)𝜔−2
𝑛 𝛾−2

𝑏2𝑛
𝜔2
𝑛

≤
𝜔−2
𝑀+1+𝜌𝑥

1−(𝜔−2
𝑀+1+𝜌𝑥)𝜔

−2
𝑀+1𝛾

−2
𝑏2𝑛
𝜔2
𝑛
= 𝐶𝑀

𝑏2𝑛
𝜔2
𝑛
.

Note that 𝑏𝑛∕𝜔𝑛 are the Fourier coefficients of

𝜒[𝑥𝐿 ,𝑥𝑅](𝑥) =
{

1, 𝑥 ∈ [𝑥𝐿, 𝑥𝑅],
0, 𝑥 ∉ [𝑥𝐿, 𝑥𝑅].

By Parseval’s identity,
∑∞

𝑛=1
𝑏2𝑛
𝜔2
𝑛
= ‖𝜒[𝑥𝐿 ,𝑥𝑅]‖

2 = |𝑥𝑅 − 𝑥𝐿|.

Therefore,
∞
∑

=𝑀+1
𝜌𝑛 ≤ 𝐶𝑀

∞
∑

𝑛=𝑀+1

𝑏2𝑛
𝜔2
𝑛
= 𝐶𝑀

[

|𝑥𝑅 − 𝑥𝐿| −
𝑀
∑

𝑛=1

𝑏2𝑛
𝜔2
𝑛

]

,

which implies (22).
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