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a b s t r a c t

This paper is concerned with the security problem for interconnected systems, where each subsystem
is required to detect local attacks. Moreover, we consider that there exists an additional eavesdropper
being able to infer the private information. Then, a privacy-preserving method is employed by
adding privacy noise to transmitted data, and the privacy level is measured by mutual information.
Nevertheless, adding privacy noise to transmitted data may affect the detection performance metrics
such as detection probability and false alarm probability. Thus, we theoretically analyze the trade-off
between the privacy and the detection performance. An optimization problem with maximizing both
the degree of privacy preservation and the detection probability is established to obtain the covariance
of the privacy noise. In addition, the attack detector of each subsystem may not obtain all information
about the privacy noise. We further theoretically analyze the trade-off between the privacy and the
false alarm probability when the attack detector has no knowledge of the privacy noise covariance. An
optimization problem with maximizing the degree of privacy preservation with guaranteeing a bound
of false alarm distortion level is established to obtain the covariance of the privacy noise. Moreover,
we consider that each subsystem can estimate the unknown privacy noise covariance by the secondary
data. Based on the estimated covariance, we construct another attack detector and analyze how the
privacy noise affects its detection performance. Finally, a numerical example is provided to verify the
effectiveness of theoretical results.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
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1. Introduction

With the development of sensing, communication and con-
rol technology, large-scale systems have been applied in many
ields, such as power systems (Liu, Chen, Zourntos, Kundur, &
Butler-Purry, 2014), intelligent transportation (Dey, Mishra, &
Chowdhury, 2014) and intelligent vehicles (Liu, Xu, & Ding, 2016).
However, the communication networks in interconnected sys-
tems potentially suffer from the security and the privacy issues.
Some malicious attackers attempt to compromise the integrity,
availability, and confidentiality of data transmitted through com-
munication networks, thereby deteriorating the systems per-
formance and even leading disastrous consequences (Teixeira,
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Shames, Sandberg, & Johansson, 2015). Therefore, maintaining the
security and the privacy becomes a key issue for interconnected
systems.

For the security problems, to cope with the network attacks in
nterconnected systems, some distributed attack detectors have
een developed, such as in Anguluri, Katewa, and Pasqualetti

(2018), Boem, Gallo, Ferrari-Trecate, and Parisini (2017), Katewa,
Anguluri, and Pasqualetti (2021), where each local detector only
requires the locally available information and the knowledge of
local model. Nevertheless, there may exist covert attacks to de-
grade the performance of each subsystem while keeping stealthy
locally (Smith, 2015). Therefore in Barboni, Gallo, Boem, and
arisini (2019), Barboni, Rezaee, Boem, and Parisini (2020), to
etect the covert attacks being stealthy, the distributed attack
etectors are proposed based on the attack-sensitive-residuals
y using the local information and the communicated estimates,
here the detector of each subsystem can detect the covert
ttacks on its neighboring subsystems.
On the other hand, the information exchange between sub-

ystems may leak private information. Therefore, it is necessary
o consider the privacy-preserving methods. One mechanism is
omomorphic cryptography (Lu & Zhu, 2018; Ruan, Gao, & Wang,
data mining, AI training, and similar technologies.
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2019), which can easily enable privacy preservation. However, it
sually suffers from high communication burden and computa-

tion cost (He, Cai, Cheng, Pan, & Shi, 2018). Another mechanism
s to add privacy noise to transmitted data. Differential privacy,
hich is realized by adding noises with Laplace or Gaussian
istributions, has been applied in many fields, such as state esti-
ation (Le Ny & Pappas, 2013), linear quadratic control (Yazdani,

ones, Leahy, & Hale, 2022) and distributed optimization (Han,
iu, Lin, & Xia, 2022). Moreover, there are methods to design
privacy noise from an information-theoretic perspective, such
as Fisher information (Farokhi & Sandberg, 2019), condition en-
tropy (Nekouei, Skoglund, & Johansson, 2018), Kullback–Leibler
divergence (Lin, Liu, Han, & Xia, 2024), and mutual informa-
tion (Murguia, Shames, Farokhi, Nešić, & Poor, 2021).

Although adding privacy noise can improve the degree of
rivacy preservation, the attack detection performance such as
alse alarm probability and detection probability may be affected
y the privacy noise. The trade-off between the privacy and the
etection probability is analyzed for the single system in Farokhi
nd Esfahani (2018), where the privacy level is measured by
isher information. Then the trade-off between the privacy and
he detection probability is analyzed in Katewa et al. (2021) for
nterconnected systems, where the privacy level is measured by
he estimation error covariance.

Moreover, it is noted that the above works are based on
the condition that the attack detector has the knowledge of the
privacy noise covariance. In order to further enhance privacy, the
covariance of the privacy noise may be unknown to the attack
detector, which means that the design of the attack detector
cannot be based on the privacy noise. Then in Hayati, Murguia,
nd van de Wouw (2024), the trade-off between the privacy

and the false alarm probability is analyzed for the signal system
without knowing the privacy noise covariance, where the privacy
level is measured by mutual information. Moreover, an optimiza-
tion problem is established in Hayati et al. (2024) to obtain the
optimal covariance of the privacy noise.

Inspired by the above discussion, in this paper we aim to
nalyze the trade-off between the privacy and the security for
nterconnected systems. The privacy-preserving method is to add
rivacy noise for keeping the state of each subsystem private, and
he privacy is quantified by mutual information. The security is
easured by the false alarm probability or the detection proba-
ility of the attack detectors. The main results are summarized as
ollows:

(1) We firstly analyze the trade-off between the privacy and
he detection performance for the interconnected system. More-
ver, an optimization problem based on mutual information is

established for maximizing the degree of privacy preservation
and the detection probability to obtain the covariance of the
rivacy noise.
(2) Then, when the privacy noise covariance is unknown to

he attack detector, we not only theoretically analyze the trade-
ff between the privacy and the false alarm probability, but also
stablish an optimization problem to obtain the covariance of the
rivacy noise to maximize the privacy degree and guarantee a
ound of false alarm distortion level.
(3) Furthermore, in order to analyze the effect of the privacy

noise on the detection probability under the unknown privacy
noise covariance, we consider that each subsystem can estimate
he unknown privacy noise covariance by the secondary data.
hen we construct a detector based on the estimated covariance,
nd further analyze the trade-off between privacy and detection
robability under unknown privacy noise covariance.
Notations. Let Z, R, Rn and Rn×m be the sets of integer num-

bers, real numbers, n-dimensional real vectors and n × m real
matrices, respectively. For any symmetric matrix P , the notation
2

P ≻ 0 (P ⪰ 0) means that P is positive definite (semidefinite).
The identity matrix is denoted as I with compatible dimension,
respectively. For any matrix A, Tr(A) is used to denote the trace
of A. The expectation of a random variable x is denoted by E(x).
The notation N (µ,Σ) represents a Gaussian distribution with
mean value µ and covariance matrix Σ . Let χ2

v and χ2
v (c) be

a central Chi-squared distribution and non-central Chi-squared
distribution, respectively, where v is degree of freedom and c
is non-centrality parameter. The notation diagj∈J [Qj] is block
diagonal concatenation matrices Qj with j belonging to a set of
ndices J . Let colj∈J [yj] and rowj∈J [yj] be the column and row
oncatenation of vectors yj, j ∈ J , respectively. The same notation
s also applied with matrices. For a sequence of vectors y(i) ∈ Rn,
= k1, k2, . . . , ks, the vector (y)ksk1 = col[y(k1), y(k2), . . . , y(ks)].
or any g ∈ Z, (g)+k =

∏k−1
i=0 (g + i), k ≥ 1.

2. Preliminaries

In this section, the preliminaries related to system model,
ttack model and local filter are introduced.

2.1. System model

We consider a discrete-time interconnected system composed
f N subsystems. Let S ≜ {1, . . . ,N} be the set of all subsys-
ems and define the set of neighbors of subsystems i as Ni. The
ynamics of subsystem i are described as

xi(k + 1) = Aixi(k) + Biui(k) +

∑
j∈Ni

Aijxj(k) + wi(k), (1)

yi(k) = Cixi(k) + vi(k), (2)

where xi(k) ∈ Rni is the state variable, ui(k) ∈ Rqi is the control
nput, and yi(k) ∈ Rmi is the sensor measurement of subsystem
. The process noise wi(k) and the measurement noise vi(k) are
ndependent and identically distributed zero-mean Gaussian sig-
als with covariance matrices Σwi ⪰ 0 and Σvi ≻ 0, respectively.
he initial state xi(0) is a zero-mean Gaussian random variable
ith covariance Σxi ≻ 0, and is independent of wi(k) and vi(k).
he matrices Ai, Bi, Aij and Ci are real-valued with compatible
imensions. The pair (Ai, Bi) is controllable, and the pair (Ai, Ci)
s observable.

Then following (Barboni et al., 2019), we can treat the inter-
connection term in (1) as unknown input. Set∑
j∈Ni

Aijxj(k) = Eiζi(k) = GiĒiζi(k) = Giξi(k), (3)

where Ei = rowj∈Ni [Aij], ζi(k) = colj∈Ni [xj(k)], ξi(k) = Ēiζi(k) ∈

Rgi , Gi is a full column rank matrix and Ēi is a weight matrix. Thus
the dynamic (1) can be transformed into

xi(k + 1) = Aixi(k) + Biui(k) + Giξi(k) + wi(k). (4)

2.2. Attack model

We consider the scenario that the attacker has the knowledge
of the subsystem model (Ai, Bi, Ci), ∀i ∈ S, and has access to
he original transmitted signals ui(k) and yi(k). Then the attacker
odifies ui(k) and yi(k) into ũi(k) and ỹi(k) by attack signals
i(k) and γi(k), respectively, which is shown in Fig. 1. It follows

from Smith (2015) that the attack signals ηi(k) and γi(k) can be
modelled as

xai (k + 1) = Aixai (k) + Biηi(k), (5)
a
γi(k) = Cixi (k), (6)
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Fig. 1. Architecture of attacked subsystem i.

where xai (k) is the state of the attacker, ηi(k) is an arbitrary
signal injected to deteriorate the system performance, and γi(k)
s injected to eliminate the effect of the attack signal ηi(k) on
he measurement output. We assume that the attack signals
egin at ka ≥ 1. Thus, it holds that xai (k) = 0 for k ≤ ka.
enote x̃i(k) and ỹi(k) as the attacked state variable and sensor
easurement of subsystem i, respectively. Then the dynamics of

attacked subsystem i are described as

x̃i(k + 1) = Aix̃i(k) + Biũi(k) +

∑
j∈Ni

Aijx̃j(k) + wi(k), (7)

ỹi(k) = Cix̃i(k) + vi(k) − γi(k), (8)

where ũi(k) = ui(k) + ηi(k). Moreover, it can be derived from (3),
4) and (7) that

x̃i(k + 1) = Aix̃i(k) + Biũi(k) + Giξ̃i(k) + wi(k), (9)

where ξ̃i(k) satisfies
∑

j∈Ni
Aijx̃j(k) = Giξ̃i(k).

2.3. Local filter

We apply an unbiased minimum variance filter proposed
n Gillijns and De Moor (2007) to estimate the state xi(k) and
nknown term ξi(k). Denote x̂i(k) and ξ̂i(k) as the estimations of

xi(k) and ξi(k), respectively. Then we have

x̂i(k) = Āi[Aix̂i(k − 1) + Biui(k − 1)] + L̄iyi(k), (10)

and

ξ̂i(k − 1) = Mi[yi(k) − Ci(Aix̂i(k − 1) + Biui(k − 1))], (11)

where L̄i = Ki + (I − KiCi)GiMi, and Āi = (I − KiCi)(I − GiMiCi) =

I − L̄iCi with Mi and Ki gain matrices to be determined. Moreover,
the following assumption is needed for the unbiased minimum
variance filter.

Assumption 1 (Gillijns & De Moor, 2007). Each matrix Ci, i ∈ S,
atisfies Rank(CiGi) = Rank(Gi) = gi with gi the dimension of
i(k).

The estimation error of subsystem i under no attacks is defined
as ei(k) = xi(k) − x̂i(k). From (1) and (10), we have

ei(k) = Âiei(k − 1) + Āiwi(k − 1) − L̄ivi(k), (12)

where Âi = ĀiAi.
Then it can be derived that ei(k) ∽ N (0,Σei (k)) with Σei (k) =

ÂiΣei (k−1)ÂT
i + ĀiΣwi Ā

T
i +LiΣviL

T
i . The following lemma provides

conditions for the stability of the filter.

Lemma 1 (Fang & de Callafon, 2012). For each subsystem i, if there
xist matrices M and K such that M satisfies M C G = I and
i i i i i i

3

|λj(Âi)| < 1, j = 1, . . . , ni, where λj(Âi) is j-th eigenvalue of Âi,

and if the pair (Ai,Σ
1
2
wi ) is controllable, then Σei (k) converges to Σēi

or any initial Σei (0), where Σēi is the unique positive semi-definite
solution of Σēi = ÂiΣēi Â

T
i + ĀiΣwi Ā

T
i + LiΣviL

T
i .

Without loss of generality, we assume that the filter starts
from the steady state, i.e., Σei (0) = Σēi .

If the subsystem i is attacked, we have the attacked state
estimation from (8) and (10) that
ˆ̃
i(k) = Āi[Ai

ˆ̃xi(k − 1) + Biui(k − 1)] + L̄iỹi(k). (13)

Then it follows from (5), (7) and (13) that the attacked estimation
rror is described as

ẽi(k) = x̃i(k) − ˆ̃xi(k) = eri (k) + xai (k), (14)

where eri (k) = Âieri (k − 1) + Āiwi(k − 1) − L̄ivi(k). Therefore, the
ttacked estimation error ẽi(k) is affected by the attack signals.
oreover, we have ẽi(k) ∽ N (xai (k),Σēi ), k ≥ ka. Thus, it is
ecessary to construct the attack detector to detect the attack
ignals ηi(k) and γi(k).

3. Attack detector and privacy-preserving method

In this section, we firstly design a distributed attack detector
to detect local covert attacks ηi(k) and γi(k). Moreover, as shown
in Fig. 1, there exists an additional eavesdropper, which is able
to infer the private state information, lurking within the com-
munication between two neighboring subsystems. Therefore, the
design of privacy-preserving method is also provided to protect
private state information from the eavesdropper.

3.1. Distributed attack detector

From (7) and (8), we can observe that if at least one neigh-
oring subsystem of subsystem i is attacked, the attacked state

˜j(k − 1), j ∈ Ni, can affect x̃i(k), and thus affect ỹi(k). If the state
stimation ˆ̃xj(k− 1) of subsystem j is transmitted to subsystem i,
hen based on ỹi(k) and ˆ̃xj(k−1), the subsystem i can apply a new
esidual zi(k) which will be affected by the attacked estimation
rror ẽj(k − 1) for detection.
Then the residual zi(k) is constructed as

zi(k) = yi(k) − Ci[Aix̂i(k − 1) + Biui(k − 1)

+

∑
j∈Ni

Aijx̂j(k − 1)]. (15)

The distribution of zi(k) is given in the following lemma.

Lemma 2. The distribution of the residual zi(k) is described as

zi(k) ∽
{
N (0,Σzi ), k < ka,
N (ai(k − 1),Σzi ), k ≥ ka,

where ai(k − 1) = CiEicolj∈Ni [x
a
j (k − 1)], and Σzi = CiAiΣēiA

T
i C

T
i +

iEidiagj∈Ni
[Σēj ]E

T
i C

T
i + CiΣwiC

T
i +Σvi ≻ 0.

Proof. The proof can be found in the arXiv version (Wang, Liu, Li,
Fridman, & Xia, 2024).

Remark 1. From Lemma 2, we know that if at least one neigh-
oring subsystem of subsystem i is attacked, then the expectation

of zi(k) is affected by the attacks on subsystem j, j ∈ Ni. Therefore,
we can design an attack detector based on residual zi(k) to detect
whether the neighboring subsystems are under attacks.
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The attack detection problem can be described as a binary
ypothesis testing problem. Let H0 and H1 be the hypothesis that

the attacks are absent and present, respectively. Since subsystem
i has no knowledge of vector ai(k−1), the Generalized Likelihood
Ratio Test (GLRT) criterion is applied for the testing problem,
which is described as

f (zi(k)|H0)
supai(k−1) f (zi(k)|H1)

H0
≷
H1

τ ′

i , (16)

where f (zi(k)|H0) and f (zi(k)|H1) are the probability density func-
ions of zi(k) under hypotheses H0 and H1, respectively, and τ ′

i >

0 is a threshold. Following Kay (1993), we can transform (16)
into

t(zi(k)) ≜ zTi (k)Σ
−1
zi zi(k)

H1
≷
H0

τi, (17)

where τi > 0 is the detection threshold needed to be determined.

Lemma 3. It holds that t(zi(k)) ∽ χ2
mi

under H0, and t(zi(k)) ∽
2
mi
(ci(k)) under H1, where ci(k) = aTi (k − 1)Σ−1

zi ai(k − 1) is a
non-centrality parameter.

Proof. The proof can be found in the arXiv version (Wang et al.,
2024).

We adopt the false alarm probability and the detection prob-
ability to describe the detection performance of detector (17),
hich are given by

Pi,f = P(t(zi(k)) > τi|H0) = 1 − Fmi (τi), (18)

and

Pi,d(k)=P(t(zi(k)) > τi|H1)=1 −Fmi (τi, ci(k)), (19)

respectively, where Fmi (τi) is the Cumulative Distribution Func-
tion (CDF) of central Chi-squared distribution χ2

mi
and Fmi (τi, ci(k))

is the CDF of non-central Chi-squared distribution χ2
mi
(ci(k)).

3.2. Privacy concern

In order to protect the privacy of subsystem j when trans-
itting state estimation to subsystem i, we design the privacy-
reserving method as follows

θ ij (k) = ˆ̃xj(k) + αi
j(k), (20)

where θ ij (k) is the noisy state estimation, αi
j(k) ∽ N (0,Σαij ) is the

rivacy noise, and the covariance Σαij ≻ 0 needs to be designed.
To quantify the privacy, we use the mutual information

I[(x̃j)K1 ; (θ ij )
K
1 ] between private and disclosed information from

nstants 1 to K . Then, if we only focus on privacy preservation
erformance, the optimal noise covariance can be obtained by
olving the optimization problem

min
{Σ
αij

}j∈Ni

∑
j∈Ni

I[(x̃j)K1 ; (θ ij )
K
1 ] (21)

s.t. Σαij ≻ 0, j ∈ Ni.

Therefore, it is necessary to formulate the mutual information
I[(x̃j)K1 ; (θ ij )

K
1 ], j ∈ Ni, in terms of the privacy noise covariance Σαij .

ollowing Cover and Thomas (1991), we can describe the mutual
nformation I[(x̃j)K1 ; (θ ij )

K
1 ] as

I[(x̃j)K1 ;(θ ij )
K
1 ] =H[(x̃j)K1 ] +H[(θ ij )

K
1 ] −H[(x̃j)K1 , (θ

i
j )

K
1 ], (22)
4

where H[(x̃j)K1 ] and H[(θ ij )
K
1 ] are differential entropy of (x̃j)K1 and

θ ij )
K
1 , respectively, and H[(x̃j)K1 , (θ

i
j )

K
1 ] is joint entropy. For the

onvenience of analysis, we define

Ψ (Ξ ) =

⎡⎢⎢⎢⎣
Ξ 0 . . . 0
AjΞ Ξ 0
...

...
. . .

...

AK−1
j Ξ AK−2

j Ξ . . . Ξ

⎤⎥⎥⎥⎦
and

ˆ (Ξ ) =

⎡⎢⎢⎢⎣
Ξ 0 . . . 0
ÂjΞ Ξ 0
...

...
. . .

...

ÂK−1
j Ξ ÂK−2

j Ξ . . . Ξ

⎤⎥⎥⎥⎦ ,
where Âj = ĀjAj. Then let Ψũj = Ψ (Bj), Ψξ̃j = Ψ (Gj), Ψwj = Ψ (I),
ˆ
wj = Ψ̂ (Āj) and Ψ̂vj = Ψ̂ (Lj).

Lemma 4. It holds that[
(θ ij )

K
1

(x̃j)K1

]
∽ N

([
µθ ij

µx̃j

]
,

⎡⎣ Σθ ij
ΣT

x̃jθ ij

Σx̃jθ ij
Σx̃j

⎤⎦)
,

where

µx̃j = Ψũj (ũj)K−1
0 + Ψξ̃j (ξ̃j)

K−1
0 ,

µθ ij
= Ψũj (ũj)K−1

0 + Ψξ̃j (ξ̃j)
K−1
0 − (xaj )

K
1 ,

Σx̃j = ΘjΣxjΘ
T
j + ΨwjΣ̌wjΨ

T
wj
, (23)

Σθ ij
= ΘjΣxjΘ

T
j + Θ̂jΣejΘ̂

T
j −ΘjΣxjΘ̂

T
j

− Θ̂jΣxjΘ
T
j + (Ψwj − Ψ̂wj )Σ̌wj (Ψwj − Ψ̂wj )

T

+ Ψ̂vjΣ̌vj Ψ̂
T
vj

+ Σ̌αij
, (24)

and Σx̃jθ ij
=ΘjΣxjΘ

T
j −ΘjΣxjΘ̂

T
j +ΨwjΣ̌wj (Ψwj −Ψ̂wj )

T with Σ̌wj =

⊗Σwj , Σ̌vj = I ⊗Σvj Σ̌αij
= I ⊗Σαij

, Θj =col[Aj, A2
j , . . . , A

K
j ], and

ˆ j =col[Âj, Â2
j , . . . , Â

K
j ].

Proof. The proof can be found in the arXiv version (Wang et al.,
2024).

From Lemma 4 and (22), we get

I[(x̃j)K1 ; (θ ij )
K
1 ] =

1
2

[
− log det(Σx̃j −Σx̃jθ ij

Σ−1
θ ij
ΣT

x̃jθ ij
)

+ log det(Σx̃j )
]
, (25)

where Σθ ij contains the privacy noise covariance Σαij . Therefore,
the mutual information has been formulated in terms of the
privacy noise distribution. Then, by the monotonicity of determi-
nant, the optimization problem (21) can be rewritten as

min
{Γj,Σαij

}j∈Ni

∑
j∈Ni

− log det(Γj) (26)

s.t.

⎧⎨⎩Σx̃j −Σx̃jθ ij
Σ−1
θ ij
ΣT

x̃jθ ij
⪰ Γj ≻ 0,

Σαij
≻ 0, j ∈ Ni.

Furthermore, by Schur complement, (26) is equivalent to the
following convex optimization problem

min
{Γj,Σ i }j∈Ni

∑
− log det(Γj) (27)
αj j∈Ni
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s.t.

⎧⎪⎪⎨⎪⎪⎩
⎡⎣Σx̃j − Γj Σx̃jθ ij

ΣT
x̃jθ ij

Σθ ij

⎤⎦ ⪰ 0,

Γj ≻ 0,Σαij ≻ 0, j ∈ Ni.

Moreover, after adding the privacy noise, the residual of sub-
ystem i under attacks is given by

zpi (k) = ỹi(k) − Ci[Ai
ˆ̃xi(k − 1) + Biui(k − 1)

+

∑
j∈Ni

Aij( ˆ̃xj(k − 1) + αi
j(k − 1))]. (28)

From Lemma 2 and (20), we have zpi (k) ∽ N (CiEiai(k − 1),Σzpi
),

where

Σzpi
= Σzi +Σpi (29)

with Σpi = CiEidiagj∈Ni
[Σαij

]ET
i C

T
i . Then the detector (17) is

transformed into

t(zpi (k)) ≜ [zpi (k)]
TΣ−1

zpi
zpi (k)

H1
≷
H0

τi. (30)

Therefore, the privacy-preserving method can affect the distribu-
ion of the residual zpi (k), thereby affecting the CDF of t(zpi (k)).
hus the detection performance such as detection probability and
he false alarm probability of subsystem i may be affected by the
rivacy noise αi

j(k), j ∈ Ni.
Furthermore, to increase the degree of privacy preservation,

he privacy noise covariance Σαij from neighboring subsystems
may be unknown to subsystem i. Therefore, subsystem i may still
se the covariance Σzi to construct the detector, which is given
y

tp(zpi (k)) ≜ [zpi (k)]
TΣ−1

zi zpi (k)
H1
≷
H0

τi. (31)

It can be seen from (30) and (31) that the detection variables
t(zpi (k)) and tp(zpi (k)) are different, which means that the CDFs
corresponding to t(zpi (k)) and tp(zpi (k)) are also different. There-
fore, the detectors (30) and (31) may have different detection
performance. It is necessary to analyze the trade-off between
privacy and security under known and unknown privacy noise,
respectively.

4. The trade-off between privacy and security under known
rivacy noise covariance

In this section, we firstly analyze the effects of privacy noise on
he false alarm probability and the detection probability for the
etector (30) with known privacy noise covariance. Moreover, on
he basis of the optimization problem (27), in order to increase
the detection performance, we reformulate an optimization prob-
lem to obtain the covariance of the privacy noise.

We firstly give the following lemma to describe the distribu-
ion of detection variable t(zpi (k)) given in (30).

Lemma 5. It holds that t(zpi (k)) ∽ χ2
mi

under H0, and t(zpi (k)) ∽
2
mi
(cpi (k)) under H1, where Σzpi

is given in (29) and

cpi (k) = aTi (k − 1)Σ−1
zpi

ai(k − 1) (32)

is non-centrality parameter.

Proof. The proof can be found in the arXiv version (Wang et al.,
2024).
5

Remark 2. From Lemmas 3 and 5, we can obtain that under
0, the detection variables t(zpi (k)) and t(zi(k)) follow the same
entral Chi-squared distribution χ2

mi
. Therefore, if each subsystem

hares the covariance of the privacy noise with its neighboring
ubsystems, the false alarm probability will not increase.
Inspired by Neyman-Pearson test criterion (Kay, 1993), we

need to preset false-alarm rate threshold pfi and to determine the
detection threshold τi. Then, it follows from Katewa et al. (2021)
that

τi = 2P−1
g (

mi

2
, 1 − pfi ), (33)

where P−1
g (·, ·) is the inverse regularized lower incomplete

Gamma function. From Lemma 5 and (19), we have the detection
probability with the privacy noise as follows

Pp
i,d(k)=P(t(zpi (k)) > τi|H1)=1−Fmi (τi, c

p
i (k)). (34)

Therefore, the detection probability Pp
i,d(k) is dependent on non-

centrality parameter cpi (k). Furthermore, it can be observed from
29) and (32) that cpi (k) is affected by diagj∈Ni

[Σαij
]. Thus, the

rivacy noise αi
j from neighboring subsystems of subsystem i can

ffect the detection probability Pp
i,d(k).

Then we give the following theorem to describe the trade-off
etween the privacy and the detection probability under known
rivacy noise covariance.

Theorem 1. If the privacy noise covariances Σ (a)
αij

and Σ (b)
αij

, j ∈ Ni,

atisfy Σ
(a)
αij

⪰ Σ
(b)
αij

≻ 0, then we have I (a)[(x̃j)K1 ; (θ ij )
K
1 ] ≤

I (b)[(x̃j)K1 ; (θ ij )
K
1 ] while Pp(a)

i,d (k) ≤ Pp(b)
i,d (k).

Proof. Due to Σ (a)
αij

⪰ Σ
(b)
αij

, then by (24), we have Σ (a)
θ ij

−Σ
(b)
θ ij

⪰ 0,

hich means that (Σ (b)
θ ij

)−1
−(Σ (a)

θ ij
)−1

⪰ 0 (Horn & Johnson, 2012).

Thus, it follows that Σx̃jθ ij
[(Σ (b)

θ ij
)−1

− (Σ (a)
θ ij

)−1
]ΣT

x̃jθ ij
⪰ 0. Then we

derive that Σx̃j − Σx̃jθ ij
(Σ (a)

θ ij
)−1ΣT

x̃jθ ij
⪰ Σx̃j − Σx̃jθ ij

(Σ (b)
θ ij

)−1ΣT
x̃jθ ij

.

ue to the monotonicity of determinant, it can be obtained that
et(Σx̃j −Σx̃jθ ij

(Σ (a)
θ ij

)−1ΣT
x̃jθ ij

) ≥ det(Σx̃j −Σx̃jθ ij
(Σ (b)

θ ij
)−1ΣT

x̃jθ ij
). From

25), we have I (a)[(x̃j)K1 ; (θ ij )
K
1 ] ≤ I (b)[(x̃j)K1 ; (θ ij )

K
1 ].

Following Ghosh (1973), we can describe Fmi (τi, c
p
i (k)) in (34)

as Fmi (τi, c
p
i (k)) = e−cpi (k)/2

∑
∞

t=0

[
(cpi (k)/2)

t

t! Fmi+2t (τi)
]
, where

Fmi+2t (τi) is the CDF of χ2
mi+2t with mi + 2t degrees of free-

dom. Since Fmi (τi, c
p
i (k)) is a decreasing function of non-centrality

parameter cpi (k) (Katewa et al., 2021), the detection probability
Pp
i,d(k) is an increasing function of cpi (k).
Due toΣ (a)

αij
⪰ Σ

(b)
αij

, j ∈ Ni, then CiEidiagj∈Ni
[Σ

(a)
αij

−Σ
(b)
αij

]ET
i C

T
i ⪰

0. It follows from (29) that Σ (a)
zpi

⪰ Σ
(b)
zpi

, which results in

[cpi (k)]
(a)

= aTi (k − 1)(Σ (a)
zpi

)−1ai(k − 1)

≤ aTi (k − 1)(Σ (b)
zpi

)−1ai(k − 1)

= [cpi (k)]
(b). (35)

Therefore, we have Pp(a)
i,d (k) ≤ Pp(b)

i,d (k). ■

Remark 3. Theorem 1 shows that if neighboring subsystems in-
crease the privacy noise covariance, the mutual information will
decrease. Thus, the degree of privacy preservation will increase.
However, the detection performance will decrease. Therefore,
there is a trade-off between privacy and security.
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In order to increase the detection probability, it is necessary to
ncrease the value of cpi (k). Intuitively, c

p
i (k) is larger if Tr(Σ

−1
zpi

)

is larger. Moreover, maximizing Tr(Σ−1
zpi

) can be achieved by
minimizing Tr(Σzpi

). Eq. (29) means that minimizing Tr(Σzpi
) is

equivalent to minimize Tr(Σpi ). Therefore, from (27) we give
he following optimization problem to obtain the privacy noise
ovariance

min
{Γj,Σαij

}j∈Ni

∑
j∈Ni

− log det(Γj) + κiTr(Σpi ) (36)

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Σpi = CiEidiagj∈Ni
[Σαij

]ET
i C

T
i ,⎡⎣Σx̃j − Γj Σx̃jθ ij

ΣT
x̃jθ ij

Σθ ij

⎤⎦ ⪰ 0,

Γj ≻ 0,Σαij ≻ 0, j ∈ Ni,

where κi > 0 is a weight factor.

5. The trade-off between privacy and security under unknown
privacy noise covariance

In this section, we firstly analyze the effects of privacy noise
n the false alarm probability and the detection probability for
he detector (31) with unknown privacy noise covariance, respec-
tively. Furthermore, an optimization problem with guaranteeing
he detection performance is established to obtain the privacy
noise covariance.

5.1. False alarm probability under unknown privacy noise covari-
nce

In (28), the residual zpi (k) follows N (0,Σzpi
) under H0, where

zpi
is given in (29). Thus, the detection variable tp(zpi (k)) in (31)

no longer follows the central Chi-squared distribution. Therefore,
the false alarm probability can be affected by the privacy noise.

Lemma 6. If subsystem i has no knowledge of the privacy noise
covarianceΣαij , j ∈ Ni, then we have Pu

i,f ≥ Pi,f , where Pi,f is given in

18), and Pu
i,f is false alarm probability given by Pu

i,f = P(tp(zpi (k)) >
i|H0). Moreover, if CiEi is full row rank, then Pu

i,f > Pi,f .

Proof. The proof can be found in the arXiv version (Wang et al.,
2024).

Theorem 2. If the matrices Σpi and Σ−1
zi are commutative and

he privacy noise covariances Σ (a)
αij

and Σ (b)
αij

, j ∈ Ni, satisfy Σ
(a)
αij

⪰

Σ
(b)
αij

≻ 0, then we have Pu(a)
i,f ≥ Pu(b)

i,f .

Proof. Since Σpi and Σ−1
zi are commutative, then it holds that

Σ−1
zi Σpi = ΣpiΣ

−1
zi , which means that (Σzi + Σpi )Σ

−1
zi =

−1
zi (Σpi + Σzi ). Thus, Σ

−1
zi and Σpi + Σzi are commutative.

oreover, Σ−1
zi and Σpi +Σzi are symmetric matrices. Therefore,

−1
zi and Σpi + Σzi have the same eigenvectors υ1, . . . , υmi ,

.e., Σ−1
zi = ΩiΦiΩ

−1
i and Σpi + Σzi = ΩiΛiΩ

−1
i , where

i = [υ1, . . . , υmi ] is a matrix composed of eigenvectors, Φi
nd Λi are diagonal matrices with eigenvalues in the diagonal

f Σ−1
zi and Σpi + Σzi , respectively. Then we have Σ

−
1
2

zi =

Φ
1
2Ω−1 and (Σ + Σ )

1
2 = ΩΛ

1
2Ω−1. It can be derived
i i i pi zi i i i

6

that Σ
−

1
2

zi (Σpi + Σzi )
1
2 = ΩiΦ

1
2
i Λ

1
2
i Ω

−1
i = [Σ−1

zi (Σpi + Σzi )]
1
2

nd (Σpi + Σzi )
1
2Σ

−
1
2

zi = ΩiΛ
1
2
i Φ

1
2
i Ω

−1
i = [(Σpi + Σzi )Σ

−1
zi ]

1
2 .

herefore, we have

Σ
1
2
zpi
Σ−1

zi Σ
1
2
zpi

= [(Σpi +Σzi )
1
2Σ

−
1
2

zi ][Σ
−

1
2

zi (Σpi +Σzi )
1
2 ]

= [(Σpi +Σzi )Σ
−1
zi ]

1
2 [Σ−1

zi (Σpi +Σzi )]
1
2

= (Σpi +Σzi )Σ
−1
zi

= I +ΣpiΣ
−1
zi . (37)

Define a Gaussian vector ϕi(k) ∽ N (0, I). Then the residual
p
i (k) in (28) can be described as zpi (k) = Σ

1
2
zpi
ϕi(k). From (31), we

obtain

tp(zpi (k)) = ϕT
i (k)Σ

1
2
zpi
Σ−1

zi Σ
1
2
zpi
ϕi(k). (38)

Thus under the privacy noise covariance Σ (a)
αij

and Σ (b)
αij

, the detec-

tion variables [tp(zpi (k))]
(a) and [tp(zpi (k))]

(b) can be given by

[tp(zpi (k))]
(a)

= ϕT
i (k)[Σ

(a)
zpi

]
1
2Σ−1

zi [Σ
(a)
zpi

]
1
2 ϕi(k),

and

[tp(zpi (k))]
(b)

= ϕT
i (k)[Σ

(b)
zpi

]
1
2Σ−1

zi [Σ
(b)
zpi

]
1
2 ϕi(k),

respectively, where Σ
(ℓ)
zpi

= Σzi + Σ
(ℓ)
pi with Σ

(ℓ)
pi =

iEidiagj∈Ni
[Σ

(ℓ)
αij

]ET
i C

T
i , ℓ ∈ {a, b}. By (37), we get

[tp(zpi (k))]
(a)

− [tp(zpi (k))]
(b)

= ϕT
i (k)(Σ

(a)
pi −Σ

(b)
pi )Σ

−1
zi ϕi(k).

Because of Σ (a)
αij

− Σ
(b)
αij

⪰ 0, then it holds that Σ (a)
pi − Σ

(b)
pi =

CiEidiagj∈Ni
[Σ

(a)
αij

− Σ
(b)
αij

]ET
i C

T
i ⪰ 0. Due to (Σ (a)

pi − Σ
(b)
pi )Σ

−1
zi =

Σ
1
2
zi [Σ

−
1
2

zi (Σ (a)
pi − Σ

(b)
pi )Σ

−
1
2

zi ]Σ
−

1
2

zi , then (Σ (a)
pi − Σ

(b)
pi )Σ

−1
zi and

Σ
−

1
2

zi (Σ (a)
pi −Σ

(b)
pi )Σ

−
1
2

zi are similar. Therefore, all the eigenvalues
f (Σ (a)

pi −Σ
(b)
pi )Σ

−1
zi are not less than zero. Moreover, because Σpi

and Σ−1
zi are commutative, then we have [(Σ (a)

pi −Σ
(b)
pi )Σ

−1
zi ]

T
=

[Σ−1
zi (Σ (a)

pi −Σ
(b)
pi )]

T
= (Σ (a)

pi −Σ
(b)
pi )

T
[Σ−1

zi ]
T

= (Σ (a)
pi −Σ

(b)
pi )Σ

−1
zi .

Therefore, (Σ (a)
pi −Σ

(b)
pi )Σ

−1
zi is a symmetric matrix. Thus, we have

(Σ (a)
pi −Σ

(b)
pi )Σ

−1
zi ⪰ 0, which means [tp(zpi (k))]

(a)
− [tp(zpi (k))]

(b)
≥

0. The proof is completed. ■

Remark 4. Theorem 2 means that if the degree of privacy
preservation is higher, the false alarm probability is larger under
the condition that Σpi and Σ−1

zi are commutative. It is noted
that this condition is only sufficient but not necessary. Therefore,
even if the condition is not satisfied, the monotonically increasing
relationship between the false alarm probability and the degree
of privacy preservation may still hold.

From Lemma 6 and Theorem 2, we can conclude that adding
the privacy noise can affect the false alarm probability. Therefore,
to constrain the effects of privacy noise on the false alarm prob-
ability, we set the upper bound of false alarm distortion level by
νi for subsystem i ∈ S, i.e., Pu

i,f ≤ pfi +νi, where pfi is given in (33).
Then we have

Ftp(zpi (k))(τi) > 1 − pfi − νi, (39)

where Ftp(zpi (k))(τi) is CDF of tp(zpi (k)). However, according to (31),
tp(zpi (k)) does not follow the Chi-square distribution and there is
no closed-form expression of its CDF. Our solution is to find the
lower bound of F p (τ ) and let the lower bound be greater
tp(zi (k))

i
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than 1 − pfi − νi. Then we define a vector ϱi(k) = hiϕ
T
i (k)ϕi(k),

here hi needs to be determined and ϕi(k) ∽ N (0, I). By (38),
p(zpi (k)) ≤ ϱi(k) if and only if Σ

1
2
zpi
Σ−1

zi Σ
1
2
zpi

⪯ hiI . Follow-

ng Hayati et al. (2024), we observe that if tp(zpi (k)) ≤ ϱi(k), then
tp(zpi (k))

(τi) ≥ Fϱi(k)(τi), where Fϱi(k)(τi) is CDF of ϱi(k). Therefore, if
1
2
zpi
Σ−1

zi Σ
1
2
zpi

⪯ hiI and

Fϱi(k)(τi) > 1 − pfi − νi, (40)

then condition (39) holds. Due to ϕT
i (k)ϕi(k) ∽ χ2

mi
, then we

obtain Fϱi(k)(τi) = Pg (
mi
2 ,

τi
2hi

) with Pg (
mi
2 ,

τi
2hi

) being regularized
Gamma function which is an increasing function of τi

2hi
. Thus in

rder to satisfy (40), we can set hi < h∗

i =
τi

2P−1
g (mi

2 ,1−pfi −νi)
, where

−1
g (·, ·) is the inverse of the lower incomplete Gamma function.

herefore, if we let Σ
1
2
zpi
Σ−1

zi Σ
1
2
zpi

⪯ hiI ≺ h∗

i I , then condition (39)

holds. Moreover, Σ
1
2
zpi
Σ−1

zi Σ
1
2
zpi

≺ h∗

i I is equivalent to

Σzpi
≺ h∗

i Σzi . (41)

Therefore, integrating (27), (29) and (41), we can give the follow-
ing optimization problem to obtain the private noise covariance

min
{Γj,Σαij

}j∈Ni

∑
j∈Ni

− log det(Γj) (42)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎣Σx̃j − Γj Σx̃jθ ij
ΣT

x̃jθ ij
Σθ ij

⎤⎦ ⪰ 0,

Σzi +Σpi ≺ h∗

i Σzi ,

Σpi = CiEidiagj∈Ni
[Σαij

]ET
i C

T
i ,

h∗

i =
τi

2P−1
g (mi

2 ,1−pfi −νi)
,

Γj ≻ 0,Σαij ≻ 0, j ∈ Ni.

If νi is larger, then the false alarm probability is allowed to
ncrease to a higher degree.

Since there is no closed-form expression of Ftp(zpi (k))(τi), it is
difficult to obtain the optimal covariance of the privacy noise.
Alternatively, we can find a suboptimal covariance by solving the
optimization problem (42) with the relaxation of the constraint
(39). Moreover, the mutual information corresponding to the
suboptimal covariance is an upper bound on that corresponding
to the optimal covariance.

Remark 5. In Hayati et al. (2024), in order to analyze the trade-
off between privacy and security, an optimization problem with
maximizing privacy preservation performance while guarantee-
ing a bound on the false alarm probability is established to obtain
the privacy noise covariance. In our paper, we not only establish
the optimization problem (42) to obtain the privacy noise covari-
nce, but also provide the theoretical analysis on the trade-off
etween privacy and security in Lemma 6 and Theorem 2.

5.2. Detection probability under unknown privacy noise covariance

In (28), the residual zpi (k) follows N (CiEiai(k − 1),Σzpi
) under

1, where both ai(k − 1) and Σzpi
are unknown to subsystem i.

rom Imhof (1961), we obtain that the detection variable tp(zpi (k))
in (31) follows generalized Chi-squared distribution. However,
he CDF of generalized Chi-squared distribution cannot be ex-
ressed in closed-form.
To cope with this problem, we consider that the subsystem

i ∈ S, can estimate the unknown covariance Σzpi
by secondary

ata. Then each subsystem can construct detector based on the
7

estimated covariance. We suppose that a set of secondary resid-
al data zsi ≜ {zpi (k

∗), k∗
= −K ∗

i ,−K ∗

i + 1, . . . ,−1|zpi (k
∗) ∼

(0,Σzpi
)} with K ∗

i > mi the number of secondary data, is
available to subsystem i. Then the detection problem can be
resented as the following binary hypothesis test

H0 :

{
zpi (k) ∼ N (0,Σzpi

),
zpi (k

∗) ∼ N (0,Σzpi
), k∗

= −K ∗

i ,−K ∗

i + 1, . . . ,−1,

and

H1 :

{
zpi (k) ∼ N (CiEiai(k − 1),Σzpi

),
zpi (k

∗) ∼ N (0,Σzpi
), k∗

= −K ∗

i ,−K ∗

i + 1, . . . ,−1.

Thus, GLRT criterion can be described as
f (zsi , z

p
i (k)|Σzpi

,H0)

supai(k−1) f (zsi , z
p
i (k)|Σzpi

,H1)

H0
≷
H1

τ ′

i , (43)

where f (zsi , z
p
i (k)|Σzpi

,H0) and f (zsi , z
p
i (k)|Σzpi

,H1) are the joint
probability density functions of zsi and zpi (k) under hypotheses H0

and H1, respectively.
Under H0, f (zsi , z

p
i (k)|Σzpi

,H0) is given by

f (zsi , z
p
i (k)|Σzpi

,H0) = Ci(Σzpi
)exp(ψh0

i ), (44)

where Ci(Σzpi
) = 1/[(2π )mi |Σzpi

|]

K∗
i +1
2 and

ψ
h0
i = −

1
2
[zpi (k)]

TΣ−1
zpi

zpi (k) −
1
2

−1∑
k=−K∗

i

[zpi (k
∗)]TΣ−1

zpi
zpi (k

∗).

It follows from Raghavan, Qiu, and McLaughlin (1995) that at time
, the unknown Σzpi

can be estimated as

ˆ h0
zpi
(k) ≜

1
K ∗

i + 1

(
zpi (k)[z

p
i (k)]

T
+

−1∑
k∗=−K∗

i

zpi (k
∗)[zpi (k

∗)]T
)
.

Substituting the estimate Σ̂h0
zpi
(k) for Σzpi

in (44), we have

f (zsi , z
p
i (k)|Σ̂

h0
zpi
(k),H0) = Ci(Σ̂

h0
zpi
(k))exp(ψ̂h0

i ), (45)

where Ci(Σ̂
h0
zpi
(k)) = 1/[(2π )mi |Σ̂

h0
zpi
(k)|]

K∗
i +1
2 and

ψ̂
h0
i =−

1
2
{[zpi (k)]

T
[Σ̂

h0
zpi
(k)]−1zpi (k)+

−1∑
k∗=−K∗

i

[zpi (k
∗)]T [Σ̂h0

zpi
(k)]−1zpi (k

∗)}

It is noted that

[zpi (k)]
T
[Σ̂

h0
zpi
(k)]−1zpi (k) = Tr{[Σ̂h0

zpi
(k)]−1zpi (k)[z

p
i (k)]

T ).

Therefore, (45) is equivalent to

f (zsi , z
p
i (k)|Σ̂

h0
zpi
(k),H0) =

1

[(2πe2)mi |Σ̂
h0
zpi
(k)|]

K∗
i +1
2

. (46)

Then under H1, the joint density function of secondary residual
data is described as

f (zsi , z
p
i (k)|Σzpi

,H1) = Ci(Σzpi
)exp(ψh1

i ), (47)

where ψh1
i = −

1
2 {

∑
−1
k∗=−K∗

i
[zpi (k

∗)]TΣ−1
zpi

zpi (k
∗) + [zpi (k) − ai(k −

1)]TΣ−1
zpi

[zpi (k)−ai(k−1)]}. We follow Raghavan et al. (1995) and
estimate Σzpi

under H1 at time k as

ˆ h1
zpi
(k) ≜

1
K ∗

+ 1

( −1∑
zpi (k

∗)[zpi (k
∗)]T

)
.

i k∗=−K∗
i
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Moreover, setting ai(k − 1) = zpi (k) can maximize the function
(47). Then substituting the estimation Σ̂h1

zpi
(k) for Σzpi

in (47), we
ave

f (zsi , z
p
i (k)|Σ̂

h1
zpi
(k),H1)=

1

[(2πe2)mi |Σ̂
h1
zpi
(k)|]

K∗
i +1
2

. (48)

Thus integrating (46) and (48), we can transform the GLRT cri-
erion in (43) with the estimated covariances Σ̂h0

zpi
(k) and Σ̂h1

zpi
(k)

nto

|Σ̂
h1
zpi
(k)|

K∗
i +1
2

|Σ̂
h0
zpi
(k)|

K∗
i +1
2

=

⎛⎝ |Σ s
zpi

|

|Σ s
zpi

|(1 + [zpi (k)]T (Σ
s
zpi
)−1zpi (k))

⎞⎠
K∗
i +1
2

=

⎛⎝ 1
1 + [zpi (k)]T (Σ

s
zpi
)−1zpi (k)

⎞⎠
K∗
i +1
2

H0
≷
H1

τ ′

i ,

where Σ s
zpi

=
∑

−1
k∗=−K∗

i
zpi (k

∗)[zpi (k
∗)]T . Therefore, we get the

following detector

ts(zpi (k)) ≜ [zpi (k)]
T (Σ s

zpi
)−1zpi (k)

H1
≷
H0

τ si − 1, (49)

where τ si − 1 is detection threshold that needs to be determined.
The false alarm probability and the detection probability of

detector (49) can be written as

P s
i,f = P(ts(zpi (k)) > τ si − 1|H0)

=

(
K ∗

i
mi − 1

) (
1
τ si

)K∗
i −mi+1

× 2F1(K ∗

i − mi + 1, 1 − mi; K ∗

i − mi +2; 1/τ si ) (50)

and

P s
i,d(k) = P(ts(zpi (k)) > τ si − 1|H1)

=

∫ 1/τ si

0
fi(r)dr +

∫ 1

1/τ si

fi(r)

×

[
1 −

1

(rτ si )
K∗
i −mi+1

K∗
i −mi+1∑
l=1

(
K ∗

i − mi + 1
l

)
× (rτ si − 1)tGl(c

p
i (k)/τ

s
i )dr

]
, (51)

respectively, where 2F1(K ∗

i − mi + 1, 1 − mi; K ∗

i − mi + 2; 1
τ si
) is

the Gaussian hypergeometric series given by 2F1(K ∗

i −mi +1, 1−

mi; K ∗

i −mi + 2; 1
τ si
) = 1+

∑
∞

l=1
(K∗

i −mi+1)+l (1−mi)
+

l
(K∗

i −mi+2)+l

1
(τ si )

l l!
, fi(r) is de-

cribed as fi(r) =
K∗
i !

(K∗
i −mi+1)!(mi−2)! r

K∗
i −mi+1(1−r)mi−2 with 0 ≤ r ≤

1, Gl(c
p
i (k)/τ

s
i ) is given by Gl(c

p
i (k)/τ

s
i ) = e−cpi (k)/τ

s
i
∑l−1

n=0
(cpi (k)/τ

s
i )

n

n! ,
nd cpi (k) is given in (32).
From (50), we observe that the false alarm probability P s

i,f
is irrelevant to the covariance Σzpi

. Therefore, the detector (49)
ensures constant false alarm rate property with respect to the
covariance. Then, it can be obtained from (51) that the detection
robability P s

i,d(k) is related to the variable cpi (k). To analyze the
ffect of cpi (k) on P s

i,d(k), in the following proposition, we describe
he monotonic relationship between the detection probability
s
i,d(k) and the variable cpi (k).

Proposition 1. The detection probability P s
i,d(k) is an increasing
function of cpi (k).
8

Subsystem parameters.
ma

i li εi k12 k23 k24 k34
0.5 kg 0.1 m 0.06 m 27 40 35 53

Proof. It suffices to prove that the derivative of P s
i,d(k) with

espect to cpi (k) is positive. From (51), we have

∂P s
i,d(k)

∂cpi (k)
=

∫ 1

1/τ si

fi(r)

(rτ si )
K∗
i −mi+1

K∗
i −mi+1∑
l=1

(
K ∗

i − mi + 1
l

)

×

l−1∑
n=0

[
(cpi (k))

n

n!(τ si )n+1 −
(cpi (k))

n−1

(n − 1)!(τ si )n

]
× (rτ si − 1)te−cpi (k)/τ

s
i dr,

=

∫ 1

1/τ si

fi(r)

(rτ si )
K∗
i −mi+1

K∗
i −mi+1∑
l=1

(
K ∗

i − mi + 1
l

)
× (rτ si − 1)te−cpi (k)/τ

s
i

(cpi (k))
l−1

(n − 1)!(τ si )l
dr,

where 1 ≤ rτ si ≤ τ si . Thus, we get
∂Psi,d(k)

∂cpi (k)
> 0. ■

Remark 6. By Proposition 1, increasing the detection probability
P s
i,d(k) requires increasing cpi (k). Moreover, it can be obtained from
35) that if we increase the privacy noise covariance, the variable
cpi (k) will increase. Therefore, there is also a trade-off between the
detection probability and the degree of privacy preservation. In
addition, the privacy noise covariance can be directly obtained by
solving optimization problem (36). It is noted that different from
he detection threshold obtained by (33) under known privacy
noise covariance, the detection threshold τ si −1 in (49) is obtained
by (50) under unknown privacy noise covariance.

6. Simulation

We consider a system composed of N = 4 subsystems, inter-
connected as in Fig. 2. The system is described as the linearized
model of multiple pendula coupled through a spring Barboni et al.
(2019). The dynamic of subsystem i is given by

ma
i l

2
i δ̈i = ma

i g
c liδi + ui +

∑
j∈Ni

kijε2i (δj − δi), (52)

where δi, ma
i and li are the displacement angle, mass, and length

f the pendulum, respectively, gc is the gravitational constant,
ij = kji is the spring coefficient, and εi is the height at which

the spring is attached to pendulum i. Some parameters used in
the simulation are described in Table 1. Define the state vector
i = [δi δ̇i]

T . The control law is given by ui = Kiyi, where
i = xi + vi and Ki is the local controller gain. Then we discretize
he dynamic of each subsystem by Euler’s approximation with
sampling time Ts = 0.01 s. Moreover, the other parameters are
given by Ci = I , Σwi = 0.001I and Σvi = 0.001I .

Starting from time ka = 1 s, we assume that subsystem 3 is
ttacked by the attacks signals

η3(k) = 3
(
1 − e−0.3(kTs−ka)

)
sin

(
2
30
πkTs

)
and γ3(k) = C3xa3(k) with xa3(k) = A3xa3(k − 1) + B3η3(k − 1).

We take subsystem 2 as an example to analyze the detec-
tion performance. The preset false alarm probability threshold is
pf2 = 0.25. Moreover, the neighboring subsystems of subsystem 2
transmit the noisy state estimations to subsystem 2 to protect
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Fig. 2. Topology of interconnected system.

Fig. 3. Effects of κ2 on the mutual information and the detection probability
under known privacy noise covariance.

Fig. 4. Effect of ν2 on the mutual information under unknown privacy noise
covariance.

private information. Then the privacy is measured by the mutual
information I2 ≜

∑
j∈N2

I[(x̃j)K1 ; (θ2j )
K
1 ] with K = 5.

We first consider that the privacy noise covariance of each
subsystem is known to its neighboring subsystems. By (33), we
get the detection threshold τ2 = 2.773. The covariance of the
rivacy noise is obtained by solving optimization problem (36).

Fig. 3 describes the effects of weight factor κ2 on the mutual
information I2 and the detection probability Pp

2,d(K ). It can be
een from Fig. 3 that as the weight factor κ2 increases, both
he detection probability and the mutual information increase.
herefore, there exists a trade-off between the degree of privacy
reservation and detection probability.
Then, we consider that the privacy noise covariance of each

ubsystem is unknown to its neighboring subsystems. To con-
train the effect of privacy noise on the false alarm probability,
e solve the optimization problem (42) to obtain the covariance

of the privacy noise. Fig. 4 shows the effect of ν2 on the mutual
information I2, where ν2 is the upper bound of false alarm dis-
tortion level. It can be seen that as the false alarm probability
increases, the mutual information decreases. Therefore, there ex-
ists a monotonically increasing relationship between the degree
of privacy preservation and false alarm probability.

Finally, we consider the relationship between the detection
probability and the mutual information under unknown privacy
noise distribution. By (50), we obtain the detection threshold
3 = 3. The privacy noise covariance is also obtained by solving
he optimization problem (36). The effect of weight factor κ2 on
the mutual information I2 is shown in Fig. 3(b). Fig. 5 shows the
effect of weight factor κ2 on the detection probability P s

2,d(K ). It
can be seen that the detection probability P s

2,d(K ) is an increasing
function of κ2. Therefore, there also exists a trade-off between the
degree of privacy preservation and the detection probability.

7. Conclusion

In this paper, we investigated the problems of attack detection
and privacy preservation for interconnected system. The trade-off
9

Fig. 5. Effect of κ2 on detection probability under unknown privacy noise
covariance.

between privacy and security was analyzed under both known
nd unknown privacy noise covariance scenarios, respectively,
nd the corresponding optimization problems were established

to obtain the privacy noise covariances. Future work may ex-
plore the trade-off between privacy and security for alternative
ttack detectors (e.g., CUSUM detector) and privacy preservation
ethods.
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