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ABSTRACT
The goal of this paper is to present a new finite-dimensional adaptive observer for some uncertain linear parabolic systems with
delayed measurements. The observer is based on the modal decomposition approach and uses a classical persistent excitation
condition. We prove that by using a finite-dimensional state predictor, we ensure exponential convergence of both states parameters
estimation error for arbitrary long constant delay.

1 | Introduction

Reaction-diffusion equations model various physical phenom-
ena, including temperature profile in the rod, concentration in
chemical reactors, and air polluted areas [1] and [2]. On the
other hand, throughout these last years, important attention
has been paid to observer design for parabolic systems with
uncertainties and/or with delayed measurements. To deal with
this problem, two approaches exist in the literature. The first one
is based on the PDE model. We can cite the recent work [3] and
references therein, where a chain of observers in PDE form has
been proposed for a class of parabolic systems to cope with a large
constant delay and the works [4–7] for uncertain parabolic sys-
tems without delay. The second approach is based on the modal
decomposition, where only a finite-dimensional part of the sys-
tem is considered in the design of the observer. For this approach,
we can cite the work [8] where an adaptive finite-dimensional
observer was proposed for a class of distributed systems with
some properties on the residual infinite-dimensional part.
Recently the authors of [9] have considered the case of the heat
equation, without uncertainties and with the sensor subjected
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to the time-varying delay case. An exponential convergence
condition involving the bound of the delay has been derived with
linear matrix inequalities (LMIs). The main advantage of this
approach compared to PDE ones is in the fact that the proposed
observer is based on a finite number of ODEs, which is more
suitable for implementation than the PDE models. It has to be
noticed that this approach was also used in [10], to derive an
output feedback based on a finite-dimensional observer with
time-varying output delay. Recently, in [11], the authors extend
the finite-dimensional approach to parabolic uncertain systems
where the uncertainties are located at output equations with fast
time-varying delay. The exponential convergence of the adaptive
finite-dimensional observer proposed in [11] was derived, pro-
vided that the bound of the delay is sufficiently small. In [12],
the case where the uncertainties are also located in the state
equation has been considered. An important challenge of [12], is
that it treats the case when the function 𝜙1(⋅, 𝑡) of the unknown
part in the PDE model depends on the spatial variable and
𝜙1(⋅, 𝑡) ∈ 𝐿2(0, 1) and also consider the fast time-varying delay
at the output. On the other hand, in [13], the authors consider
the case where the uncertainties are located in the state equation
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with rather restrictive conditions on the function 𝜙1(⋅, 𝑡) and a
constant delay. In the work [13], the function 𝜙1(⋅, 𝑡) is assumed
as a finite sum involving a finite number of eigenfunctions in
𝐿2(0, 1), which is obviously a rather restrictive condition. To cope
with constant delays, the authors use a classical output predictor.
The exponential convergence is derived by using the classical
small gain approach under restrictive conditions on the delay,
which has to be sufficiently small. It has also to be noticed that the
same restriction on the bound of the delay exists in [14] where the
distributed delay case is considered. In both papers [13] and [14],
the number of gains involved in the observers are at least equal
to the number of terms in the finite sum. This property can
imply a high number of gains on the observer even if the number
of unstable modes is small. The goal of the present paper is to
provide a more efficient solution than [13] by using a different
approach. More precisely, we propose to use a finite-dimensional
state predictor to handle large delay, and we provide a new expo-
nentially convergent adaptive finite-dimensional observer. We
also propose an algorithm where the number of gains involved
in the observer is equal to the number of unstable modes of
the systems.

Notations

We denote with 𝐶(𝑎, 𝑏) the linear space of continuous func-
tions on the domain (𝑎, 𝑏). 𝐿2(𝑎, 𝑏) is the linear space of
square integrable functions on (𝑎, 𝑏). Finally, 𝐻 1(𝑎, 𝑏) is the
Sobolev space of functions in 𝐿2(𝑎, 𝑏) such that the func-
tion and its first derivative has a finite 𝐿2 norm. Denote
𝐴𝑛 = diag(−𝜇1, . . . , −𝜇𝑛), 𝐶𝑛 = (

√
2, . . . ,

√
2) is a row that has

𝑛 columns, 𝐿𝑛 = (𝑙1, . . . , 𝑙𝑛)𝑇 and, 𝑝𝑛 = (𝑝1, . . . , 𝑝𝑛)𝑇 are vectors
with 𝑛 rows. 𝐴𝑖−𝑗 = diag(−𝜇𝑖+1, . . . , −𝜇𝑗), 𝑝𝑖−𝑗 = (𝑝𝑖+1, . . . , 𝑝𝑗)𝑇 ,
𝐶𝑛−𝑗 = (

√
2, . . . ,

√
2) is a row that has 𝑛 − 𝑗 columns.

2 | System Description and Assumptions

Consider the class of parabolic systems:

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑞𝑢 + 𝜙1(𝑥, 𝑡)𝜃 for 𝑡 > 0, 𝑥 ∈ (0, 1) (1a)

𝑢𝑥(0) = 𝑢(1) = 0 (1b)

𝑢(𝑥, 0) = 𝑢0 (1c)

with initial condition 𝑢0 ∈ 𝐻 1(0, 1) with 𝑢0(1) = 0 and under the
delayed measurement

𝑦(𝑡) = 𝑢(0, 𝑡 − 𝑟) + 𝜙(𝑡 − 𝑟)𝜃 (2)

where 𝑟 is an arbitrary known constant delay. The constant 𝑞 is a
positive known parameter, 𝜙 and 𝜙1 are known and continuous
functions that satisfy

|𝜙(𝑡)| ≤ 𝑀𝜙 , ∀𝑡 ≥ 0 (3)

and |𝜙1(𝑥, 𝑡)| ≤ 𝑀𝜙1
∀𝑥 ∈ [0, 1], 𝑡 ≥ 0 (4)

with some positive constants 𝑀𝜙 and 𝑀𝜙1
.

We also suppose that 𝜙1(., 𝑡) ∈ 𝐻 1(0, 1)with 𝜙1(1, 𝑡) = 0. The vec-
tor 𝜃 ∈ R𝑚 is a vector of unknown parameters. The term 𝜙(𝑡)𝜃

models either sensor uncertainties or faults to be detected and
isolated. This uncertain term induces a difference between 𝑢(0, 𝑡)
and the available measurement 𝑦(𝑡). The term 𝜙1(𝑥, 𝑡)𝜃 models
uncertainties or disturbances that also disturb the model. The
role of the adaptive observer is to provide an accurate estima-
tion of both unmeasurable state 𝑢(𝑥, 𝑡) and the unknown vector
of parameters 𝜃.

The well-known regular Sturm-Liouville eigenvalue problem
𝜓 ′′(𝑥) + 𝜆𝜓(𝑥) = 0, 𝑥 ∈ [0, 1] with 𝜓(1) = 𝜓 ′(0) = 0, generates
an increasing sequence of eigenvalues 𝜆𝑛 = 𝜋2

4
(2𝑛 − 1)2 𝑛 ≥ 1

with corresponding eigenfunctions 𝜓𝑛(𝑥) =
√

2 cos(
√

𝜆𝑛 𝑥)
for 𝑛 ≥ 1. The eigenfunctions 𝜓𝑛 form an orthonormal basis
of 𝐿2(0, 1) with 𝑓 ′(0) = 𝑓 (1) = 0. A strong solution of (1)
is a function 𝑢 ∈ 𝐿2(0, ∞); 𝐻 2(0, 1) ∩ 𝐶([0, ∞); 𝐻 1(0, 1) and
𝑢𝑡 ∈ 𝐿2((0, ∞); 𝐿2(0, 1)) that satisfies (1c) for 𝑡 = 0 and (1a), (1b)
for almost all 𝑡 > 0. By [15, Th. 7.7], (1) has a unique strong solu-
tion for 𝑢0 ∈ 𝐻 1(0, 1) s.t 𝑢0(1) = 0. Consequently the solutions
of the Equation (1) can be presented as

𝑢(𝑥, 𝑡) =
∞∑

𝑛=1
𝑧𝑛(𝑡)𝜓𝑛(𝑥) (5)

where 𝑧𝑛(𝑡) = ∫ 1
0 𝑢(𝑥, 𝑡)𝜓𝑛(𝑥)𝑑 𝑥. We assume that the function 𝜙1

can be written as a finite sum as follows:

𝜙1(𝑥, 𝑡) =
𝑁𝜙∑

𝑛=1
𝑝𝑛(𝑡)𝜓𝑛(𝑥) (6)

where 𝑁𝜙 is a positive constant and 𝑝𝑛(𝑡) = ∫ 1
0 𝜙1(𝑥, 𝑡)𝜓𝑛(𝑥)𝑑 𝑥.

Notice that since both 𝜙1 and 𝜓𝑛 are bounded, then 𝑝𝑛 is also
bounded and satisfies |𝑝𝑛| ≤ √

2𝑀𝜙1
.

Differentiating the modes 𝑧𝑛 and further integrating by parts
twice, we have

�̇�𝑛(𝑡) = −𝜆𝑛 𝑧𝑛(𝑡) + 𝑞𝑧𝑛(𝑡) + 𝑝𝑛(𝑡)𝜃 𝑛 = 1, 2, . . . , 𝑁𝜙 (7)

and

�̇�𝑛(𝑡) = −𝜆𝑛 𝑧𝑛(𝑡) + 𝑞𝑧𝑛(𝑡) 𝑛 = 𝑁𝜙 + 1, . . . , ∞ (8)

The output 𝑦 can also be expressed as follows:

𝑦(𝑡) =
√

2
∞∑

𝑛=1
𝑧𝑛(𝑡 − 𝑟) + 𝜙(𝑡 − 𝑟)𝜃 (9)

Since 𝜆𝑛 is an increasing sequence, then we can define an integer
𝑁0 as the smallest integer 𝑛 for which the following inequality
holds:

− 𝜆𝑛 + 𝑞 < 0, ∀𝑛 > 𝑁0 (10)

We assume additionally that 𝑞 ≠ 𝜆𝑛. Since (𝐴𝑁0
, 𝐶𝑁0

) is observ-
able [10], we choose 𝐿𝑁0

such that 𝐴𝑁0
− 𝐿𝑁0

𝐶𝑁0
is Hurwitz.

Consider the state estimation errors �̃� 𝑁 = (�̃�1, . . . , �̃�𝑁 )𝑇 ,
the delayed state estimation errors 𝜉 𝑁0

= (𝜉1, . . . , 𝜉 𝑁0
)𝑇 and

𝜉 𝑁−𝑁0
= (𝜉 𝑁0+1, . . . , 𝜉 𝑁 )𝑇 where 𝜉 𝑛(𝑡) = �̂�𝑛(𝑡) − 𝑧𝑛(𝑡 − 𝑟), and
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�̃� 𝑁−𝑁0
= (�̃�𝑁0+1, . . . , �̃�𝑁 )𝑇 where �̃�𝑛(𝑡) = �̂�𝑛(𝑡) − 𝑧𝑛(𝑡), and the

estimation parameter error 𝜃 = �̂� − 𝜃.

Now let us consider the term

𝜁 (𝑡) =
∞∑

𝑛=𝑁+1
𝑧𝑛(𝑡 − 𝑟) (11)

where 𝑁 = max{𝑁0, 𝑁𝜙}. It was already proven in [10], that∑∞
𝑛=𝑁+1𝜆𝑛 𝑧2

𝑛
is well defined for any 𝑡 > 𝑡0 and

∑∞
𝑛=𝑁+1𝜆𝑛 𝑧2

𝑛
≤||𝑢𝑥(., 𝑡)||2

𝐿2(0,1). We also have the following property:

𝜁 (𝑡) = 1√
2

(
𝑢(0, 𝑡 − 𝑟) −

𝑁∑
=1

𝑧𝑛(𝑡 − 𝑟)𝜓𝑛(0)

)

then from the fact that 𝑢(0, 𝑡 − 𝑟) = − ∫ 1
0 𝑢𝑥(𝑥, 𝑡 − 𝑟)𝑑 𝑥 and

𝜓𝑛(0) = − ∫ 1
0 𝜓 ′

𝑛
(𝑥)𝑑 𝑥, we deduce that

𝜁 (𝑡) = − 1√
2 ∫

1

0

(
𝑢𝑥(𝑥, 𝑡 − 𝑟) −

𝑁∑
=1

𝑧𝑛(𝑡 − 𝑟)𝜓 ′
𝑛
(𝑥)

)
𝑑 𝑥

since 𝑢𝑥(𝑥, 𝑡 − 𝑟) =
∑∞

𝑛=1𝑧𝑛(𝑡 − 𝑟)𝜓 ′
𝑛
(𝑥), then

𝜁 (𝑡) = − 1√
2 ∫

1

0

( ∞∑
𝑛=𝑁+1

𝑧𝑛(𝑡 − 𝑟)𝜓 ′
𝑛
(𝑥)

)
𝑑 𝑥

using the Schwarz inequality, and since 𝜓 ′
𝑛
(𝑥) =

−
√

2𝜆𝑛 sin(
√

𝜆𝑛 𝑥), then we deduce that

|𝜁 (𝑡)|2 ≤ 1
2

∞∑
𝑛=𝑁+1

𝑧2
𝑛
(𝑡 − 𝑟)‖‖‖𝜓 ′

𝑛
(𝑥)‖‖‖2

𝐿2(0,1)
≤ 1

2

∞∑
𝑛=𝑁+1

𝜆𝑛 𝑧2
𝑛
(𝑡 − 𝑟)

(12)
Consider the Lyapunov function

𝑉 (𝑡) =
∞∑

𝑛=𝑁+1
𝜆𝑛 𝑧2

𝑛
(𝑡 − 𝑟) (13)

then its time derivative will be written as follows:

�̇� (𝑡) = −2
∞∑

𝑛=𝑁+1
𝜆𝑛 𝜇𝑛 𝑧2

𝑛
(𝑡 − 𝑟) (14)

we easily derive that

�̇� (𝑡) ≤ −2𝜇𝑁+1

∞∑
𝑛=𝑁+1

𝜆𝑛 𝑧2
𝑛
(𝑡 − 𝑟) = −2𝜇𝑁+1𝑉 (𝑡) (15)

From this last inequality, we deduce that both
∑∞

𝑛=𝑁+1𝜆𝑛 𝑧2
𝑛

and|𝜁 (𝑡)| converge exponentially to zero.

3 | Finite-Dimensional Adaptive Observer
Design

3.1 | Adaptive Observer Structure

Following [10], we will construct an N-dimensional adaptive
observer constituted by two parts. The first one is an adaptive

observer which provides an estimation of the delayed state
𝑢(𝑥, 𝑡 − 𝑟) and has the following structure

⎧⎪⎪⎨⎪⎪⎩

�̇� 𝑛(𝑡) = −𝜇𝑛 𝜉𝑛(𝑡) + 𝑝𝑛(𝑡 − 𝑟)�̂� − 𝑙𝑛(�̂� − 𝑦) + 𝑣1 𝑛 = 1, . . . , 𝑁0

�̇� 𝑛(𝑡) = −𝜇𝑛 𝜉𝑛(𝑡) + 𝑝𝑛(𝑡 − 𝑟)�̂� + 𝑣2 𝑛 = 𝑁0 + 1, . . . , 𝑁

�̂�(𝑡) =
√

2
𝑁∑

𝑛=1
𝜉𝑛(𝑡) + 𝜙(𝑡 − 𝑟)�̂�(𝑡)

(16)
with 𝑁0 defined in (10) and 𝑁 = max{𝑁0, 𝑁𝜙}, 𝜇𝑛 = 𝜆𝑛 − 𝑞, 𝑙𝑛

are observer gains, �̂�(𝑡) is estimate of 𝜃, 𝑣1 and 𝑣2 are additional
signals that we will choose later on.

The second part is a finite-dimensional state predictor which
recovers the state 𝑢(𝑥, 𝑡) and is constituted by two sub-parts:
The first one is a sequence of predictors �̂�

(𝑖)
𝑁0
(𝑡) ∈ ℝ𝑁0 with

�̂�
(𝑖)
𝑁0
(𝑡) = col𝑁0

𝑛=1(�̂�𝑛(𝑡 − 𝑖𝛿)) which estimates the vector of the
delayed states 𝑍𝑁0

(𝑡 − 𝑖𝛿) = col𝑁0
𝑛=1(𝑧𝑛(𝑡 − 𝑖𝛿)) of the unstable

part and defined for 𝑖 = 0, . . . 𝜈𝑟 − 1 by

̇̂
𝑍

(𝑖)
𝑁0
(𝑡) = 𝐴𝑁0

�̂�
(𝑖)
𝑁0
(𝑡) + col𝑁0

𝑛=1(𝑝𝑛(𝑡 − 𝑖𝛿))�̂�(𝑡)

− 𝑒�̄�𝛼𝑖 ,𝑁0 𝛿 𝐿𝑁0
𝐶𝑁0

(�̂�
(𝑖+1)
𝑁0

(𝑡) − �̂�
(𝑖)
𝑁0
(𝑡 − 𝛿))

�̂�
(𝜈𝑟)
𝑁0

(𝑡) = 𝜉𝑁0
(𝑡)

(17)

with 𝜉𝑁0
(𝑡) = col𝑁0

𝑛=1(𝜉𝑛(𝑡)), 𝐿𝑁0
such that �̄�𝛼𝑖 ,𝑁0

= �̄�𝑁0
+ 𝛼𝑖 𝐼𝑁0

is Hurwitz, �̄�𝑁0
= 𝐴𝑁0

− 𝐿𝑁0
𝐶𝑁0

, and 𝜈𝑟 an integer such that
𝛿 = 𝑟∕𝜈𝑟 satisfies

∫
𝛿

0

‖‖‖𝑒(�̄�𝑁0+𝛼𝐼𝑁0 )𝑠 𝐿𝑁0
𝐶𝑁0

‖‖‖ d𝑠 < 1 (18)

The second sub-part is represented as follows:

�̂�𝑛(𝑡) = 𝑒−𝜇𝑛 𝑟 𝜉𝑛(𝑡) + ∫
𝑡

𝑡−𝑟

𝑒−𝜇𝑛(𝑡−𝑠)𝑝𝑛(𝑠)�̂�(𝑠)𝑑 𝑠, 𝑛 = 𝑁0 + 1, . . . , 𝑁

(19)
and estimates the states 𝑧𝑛(𝑡) for 𝑖 = 𝑁0 + 1, . . . , 𝑁 which have
a finite number of stable modes. The overall finite-dimensional
state predictor has the following structure:

û(𝑥, 𝑡) =
𝑁∑

𝑛=1
�̂�𝑛(𝑡)𝜓𝑛(𝑥) (20)

Remark 1. We can easily remark that we use two kinds of pre-
dictors: one for unstable modes and another one for stable modes.
This is due to the fact that for unstable modes, the predictor in
integral form exhibits instability in the implementation, which is
not the case for stable modes.

Lemma 1. If 𝜁 (𝑡), 𝜉 𝑁0
(𝑡) and 𝜃(𝑡) are exponentially stable with

rate 𝜌, and suppose that the following inequality is fulfilled

∫
𝛿

0

‖‖‖𝑒(�̄�𝑁0+𝛼𝐼𝑁0 )𝑠 𝐿𝑁0
𝐶𝑁0

‖‖‖ d𝑠 < 1 (21)

Then for an arbitrary positive constant 𝛼 < 𝜌, the sequence of pre-
dictors defined in (17) for an arbitrary sequence 𝛼0 < 𝛼1 < . . . <

𝛼 is such that |col𝑁0
𝑛=1(𝑧𝑛(𝑡 − 𝑖𝛿)) − �̂�

(𝑖)
𝑁0
(𝑡)| is exponentially stable
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with rate 𝛼𝑖. In particular, |�̂�
(0)
𝑁0
(𝑡) − col𝑁0

𝑛=1(𝑧𝑛(𝑡))| → 0 exponen-
tially with rate 𝛼0.

Proof. Denoting 𝜀
(𝑖)
𝑁0
(𝑡) = 𝑍𝑁0

(𝑡 − 𝑖𝛿) − �̂�
(𝑖)
𝑁0
(𝑡) the estimation

error of the 𝑖-th predictor, we have

�̇�
(𝑖)
𝑁0
(𝑡) = 𝐴𝑁0

𝜀
(𝑖)
𝑁0
(𝑡) − col𝑁0

𝑛=1(𝑝𝑛(𝑡 − 𝑖𝛿))𝜃(𝑡)

+ 𝑒�̄�𝛼𝑖 ,𝑁0 𝛿 𝐿𝑁0
𝐶𝑁0

(𝜀
(𝑖+1)
𝑁0

(𝑡) − 𝜀
(𝑖)
𝑁0
(𝑡 − 𝛿))

(22)

Define the scaled version of 𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡) = 𝑒𝛼𝑖 𝑡 𝜀
(𝑖)
𝑁0
(𝑡). Clearly, bound-

edness of 𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡) implies that 𝜀
(𝑖)
𝑁0
(𝑡) is exponentially stable with

rate 𝛼𝑖.

�̇�
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡) = (𝐴𝑁0
+ 𝛼𝑖 𝐼𝑁0

)𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡) − 𝑒𝛼𝑖 𝑡col𝑁0
𝑛=1(𝑝𝑛(𝑡 − 𝑖𝛿))𝜃(𝑡)

− 𝑒�̄�𝛼𝑖 ,𝑁0 𝛿 𝐿𝑁0
𝐶𝑁0

(𝑒𝛼𝑖 𝑡 𝜀
(𝑖+1)
𝛼𝑖+1 ,𝑁0

(𝑡) − 𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡 − 𝛿))
(23)

Since 𝛼𝑖 < 𝛼𝑖+1 < 𝛼 < 𝜌, in the inductive hypothesis that 𝜀
(𝑖+1)
𝑁0

(𝑡)
is exponentially stable with rate 𝛼𝑖+1, which is also the case for
𝜉 𝑁0

with rate 𝜌, this equation becomes

�̇�
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡) = (𝐴𝑁0
+ 𝛼𝑖 𝐼𝑁0

)𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡) − 𝑒�̄�𝛼𝑖 ,𝑁0 𝛿 𝐿𝑁0
𝐶𝑁0

(𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡 − 𝛿))
(24)

that admits the integral representation

𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡) = ∫
𝑡

𝑡−𝛿

𝑒�̄�𝛼𝑖 ,𝑁0 (𝑡−𝑠)𝐿𝑁0
𝐶𝑁0

𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑠) d𝑠 + 𝜅𝑖
(25)

where 𝜅𝑖 depends on the initial conditions, as it can be verified by
differentiation. Thus,

|𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝑡)| ≤ ∫
𝛿

0
𝑒(𝛼𝑖−𝛼)𝑠|||𝑒�̄�𝛼,𝑁0 𝜏 𝐿𝑁0

𝐶𝑁0

||| d𝜏 ⋅ sup
𝜏∈[𝑡−𝑟,𝑡]

|𝜀
(𝑖)
𝛼𝑖 ,𝑁0

(𝜏)|
+ |𝜅𝑖|

(26)
Since 𝑒(𝛼𝑖−𝛼)𝑠 < 1, the integral term is less than 1, which guaran-
tees the boundedness of |𝜀

(𝑖)
𝛼𝑖 ,𝑁0

(𝑡)| and the exponential stability
with rate 𝛼𝑖 of |𝜀

(𝑖)
𝑁0
(𝑡)|. ◽

Remark 2. The observer proposed in [13] which supposes
𝜙(𝑡) = 0, has the following structure:

⎧⎪⎪⎨⎪⎪⎩

̇̂𝑧𝑛(𝑡) = −𝜇𝑛 �̂�𝑛(𝑡) + 𝑝𝑛(𝑡)�̂�(𝑡) − 𝑙𝑛(�̂� − 𝑦𝑝(𝑡 + 𝑟)) + 𝑣1

𝑛 = 1, . . . , 𝑁𝜙

�̂�(𝑡) =
√

2
𝑁∑

𝑛=1
�̂�𝑛(𝑡)

(27)

with 𝑦𝑝 in Equation (22) of [13] is classical output predictor
by using the classical formula 𝑦(𝑡 + 𝑟) = 𝑦(𝑡) + ∫ 𝑟

0 �̇�(𝑡 + 𝑠)𝑑 𝑠. As
we can see, the above structure is based on the prediction of
the delayed output by using a classical predictor (Equation (22)
of [13]) based on the Leibniz formula. This predictor ensures
convergence only for small delays and leads to a conservative
condition on the bound of delay 𝑟. In the present paper we adopt a
different approach where we have two parts: The first one is con-
stituted by an adaptive observer that provides an estimation of the
delayed states, and a second one, which is based on a sequence of

predictors that can recover the value of state 𝑢(𝑥, 𝑡) at instant 𝑡 for
any arbitrarily long delay 𝑟.

Remark 3. It has to be noticed that the states
predictors (19) can also be written as delayed differential
equations (dde):

̇̂𝑧𝑛(𝑡) = 𝑒−𝜇𝑛 𝑟 �̇� 𝑛(𝑡) − 𝜇𝑛[�̂�𝑛(𝑡) − 𝑒−𝜇𝑛 𝑟 𝜉𝑛(𝑡)]

+ 𝑝𝑛(𝑡)�̂�(𝑡) − 𝑒−𝜇𝑛 𝑟 𝑝𝑛(𝑡 − 𝑟)�̂�(𝑡 − 𝑟)
(28)

with initial condition

𝑧𝑛(0) = 𝑒−𝜇𝑛 𝑟 𝜉𝑛(0) + ∫
0

−𝑟

𝑒𝜇𝑛 𝑠 𝑝𝑛(𝑠)�̂�(𝑠)𝑑 𝑠

The estimation errors system 𝜉 𝑁0
(𝑡) and 𝜉 𝑁−𝑁0

(𝑡) can be
expressed as follows:

̇̃𝜉 𝑁0
(𝑡) = (𝐴𝑁0

− 𝐿𝑁0
𝐶𝑁0

)𝜉 𝑁0
(𝑡)

− (𝐿𝑁0
𝜙(𝑡 − 𝑟) − 𝑝𝑁0

(𝑡 − 𝑟))𝜃(𝑡)

− Ł𝑁0
𝐶𝑁−𝑁0

𝜉 𝑁−𝑁0
(𝑡) + 𝐿𝑁0

√
2𝜁 (𝑡) + 𝑣1

̇̃𝜉 𝑁−𝑁0
(𝑡) = 𝐴𝑁−𝑁0

𝜉 𝑁−𝑁0
(𝑡) + 𝑝𝑁−𝑁0

(𝑡 − 𝑟)𝜃(𝑡) + 𝑣2

(29)

Consider for 𝜉 𝑁0
and 𝜉 𝑁−𝑁0

defined in (29) the decoupling trans-
formations [16]

𝑒𝑁0
(𝑡) = 𝜉 𝑁0

(𝑡) − 𝛼1(𝑡)𝜃(𝑡) (30)

and
𝑒𝑁−𝑁0

(𝑡) = 𝜉 𝑁−𝑁0
(𝑡) − 𝛼2(𝑡)𝜃(𝑡) (31)

where 𝛼1 is the solution of an auxiliary filter which is defined as
follows:

⎧⎪⎨⎪⎩
�̇�1(𝑡) = (𝐴𝑁0

− 𝐿𝑁0
𝐶𝑁0

)𝛼1(𝑡) − (𝐿𝑁0
𝜙(𝑡 − 𝑟) − 𝑝𝑁0

(𝑡 − 𝑟))
+ 𝐿𝑁0

𝐶𝑁−𝑁0
𝛼2(𝑡)

𝑣1(𝑡) = 𝛼1(𝑡) ̇̂
𝜃

(32)
and 𝛼2 is the solution of an auxiliary filter which is also defined
as follows: {

�̇�2(𝑡) = 𝐴𝑁−𝑁0
𝛼2(𝑡) + 𝑝𝑁−𝑁0

(𝑡 − 𝑟)
𝑣2(𝑡) = 𝛼2(𝑡) ̇̂

𝜃
(33)

From this, we deduce two ODEs for 𝑒𝑁0
and 𝑒𝑁−𝑁0

which do not
depend on 𝜃.

�̇�𝑁0
(𝑡) = (𝐴𝑁0

− 𝐿𝑁0
𝐶𝑁0

)𝑒𝑁0
(𝑡) +

√
2 𝐿𝑁0

𝜁 (𝑡)

− 𝐿𝑁0
𝐶𝑁−𝑁0

𝑒𝑁−𝑁0
(𝑡)

(34)

and
�̇�𝑁−𝑁0

(𝑡) = (𝐴𝑁−𝑁0
)𝑒𝑁−𝑁0

(𝑡) (35)

Since 𝑁 > 𝑁0, then 𝐴𝑁−𝑁0
is Hurwitz and consequently 𝑒𝑁−𝑁0

is
exponentially stable. Consider

𝑉0(𝑡) = 𝑒𝑁0
(𝑡)𝑇 𝑃0𝑒𝑁0

(𝑡) (36)
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where 𝑃0 satisfies the following inequality

𝑃0(𝐴𝑁0
− 𝐿𝑁0

𝐶𝑁0
) + (𝐴𝑁0

− 𝐿𝑁0
𝐶𝑁0

)𝑇 𝑃0 ≤ −2𝑃0 (37)

It’s time-derivative will be expressed as follows:

�̇� 0 ≤ −2𝑉0

+ 2𝑒𝑁0
(𝑡)𝑇 𝑃0

(√
2 𝐿𝑁0

𝜁 (𝑡) − 𝐿𝑁0
𝐶𝑁−𝑁0

𝑒𝑁−𝑁0
(𝑡)
) (38)

Applying again Young’s inequality, then

�̇� 0 ≤ −2𝑉0 + 𝜖1|𝑒𝑁0
(𝑡)|2 + 4

𝜖1
|𝑃0|2||𝐿𝑁0

|2|𝜁 (𝑡)|2
+

2|𝑃0|2
𝜖1

|𝐿𝑁0
𝐶𝑁−𝑁0

|2|𝑒𝑁−𝑁0
(𝑡)|2 (39)

which gives us

�̇� 0 ≤ −
(

2 −
𝜖1

𝜆min(𝑃0)

)
𝑉0 +

4
𝜖1
|𝑃0|2||𝐿𝑁0

|2|𝜁 (𝑡)|2 (40)

+
2|𝑃0|2

𝜖1
|𝐿𝑁0

𝐶𝑁−𝑁0
|2|𝑒𝑁−𝑁0

(𝑡)|2 (41)

Choosing 𝜖1 = 𝜆min(𝑃0), then

�̇� 0 ≤ −𝑉0 +
4

𝜆min(𝑃0)
|𝑃0|2||𝐿𝑁0

|2|𝜁 (𝑡)|2 (42)

+
2|𝑃0|2

𝜆min(𝑃0)
|𝐿𝑁0

𝐶𝑁−𝑁0
|2|𝑒𝑁−𝑁0

(𝑡)|2 (43)

Since both 𝑒𝑁−𝑁0
(𝑡) and |𝜁 (𝑡)| are exponentially vanishing, we can

also deduce from the comparison lemma that |𝑒𝑁0
| is also expo-

nentially vanishing.

3.1.1 | Estimation Law Design

Following [16], we propose the following estimation law:

̇̂
𝜃(𝑡) = −𝑅(𝑡)(𝛼𝑇 (𝑡)𝐶 𝑇

𝑁
+ 𝜙𝑇 (𝑡 − 𝑟))(�̂�(𝑡) − 𝑦(𝑡)) (44)

with

d𝑅(𝑡)
𝑑 𝑡

= 𝑅(𝑡) − 𝑅(𝑡)

× (𝛼𝑇 (𝑡)𝐶 𝑇
𝑁
+ 𝜙𝑇 (𝑡 − 𝑟))(𝐶𝑁 𝛼𝑇 (𝑡) + 𝜙(𝑡 − 𝑟))𝑅(𝑡)

(45)

where 𝛼𝑇 = (𝛼𝑇
1 𝛼𝑇

2 ) and 𝐶𝑁 = (𝐶𝑁0
𝐶𝑁−𝑁0

). It was already
proven in [16] that if |𝛼| and |𝜙| are bounded and if the persistent
excitation condition

∫
𝑡+𝑇

𝑡

𝐾 𝑇 (𝑠)𝐾(𝑠)𝑑 𝑠 ≥ 𝛽0𝕀 (46)

with
𝐾 𝑇 (𝑡) = (𝛼𝑇 (𝑡)𝐶 𝑇

𝑁
+ 𝜙𝑇 (𝑡 − 𝑟)) (47)

holds for some positive constant 𝛽0, then both 𝑅(𝑡) and 𝑅−1(𝑡) are
positive definite matrices and there exist two positive constants
𝛽1 and 𝛽2 such that the following inequalities hold:

𝛽1𝕀𝑚 ≤ 𝑅(𝑡) ≤ 𝛽2𝕀𝑚 (48)

and the inverse matrix satisfies:

d𝑅−1(𝑡)
𝑑 𝑡

= −𝑅−1(𝑡)

+ (𝛼𝑇 (𝑡)𝐶 𝑇
𝑁
+ 𝜙𝑇 (𝑡 − 𝑟))(𝐶𝑁 𝛼𝑇 (𝑡) + 𝜙(𝑡 − 𝑟)) (49)

with

𝛽1𝕀𝑚 ≤ 𝑅−1(𝑡) ≤ 𝛽2𝕀𝑚 (50)

3.1.2 | Convergence Analysis

The parameter estimation error is governed by the follow-
ing ODEs:

̇̃𝜃(𝑡) = −𝑅(𝑡)𝐾 𝑇 (𝑡)𝐾(𝑡)𝜃(𝑡)

− 𝑅(𝑡)𝐾 𝑇 (𝑡)(𝐶𝑁0
𝜖𝑁0

(𝑡) + 𝐶𝑁−𝑁0
𝑒𝑁−𝑁0

(𝑡) −
√

2𝜁 (𝑡))
(51)

To study the convergence of 𝜃, let us consider the following
Lyapunov function for (51):

𝑉𝜃(𝑡) = 𝜃
𝑇 (𝑡)𝑅−1(𝑡)𝜃(𝑡) (52)

Then the time-derivative of 𝑉𝜃 satisfies the following equality

�̇� 𝜃(𝑡) = −𝑉𝜃(𝑡) + |𝐶𝑁0
𝜖𝑁0

(𝑡) + 𝐶𝑁−𝑁0
𝑒𝑁−𝑁0

(𝑡) −
√

2𝜁 (𝑡)|2 (53)

Using Young’s inequality, we derive

�̇� 𝜃(𝑡) ≤ −𝑉𝜃(𝑡) + 4|𝐶𝑁0
𝜖𝑁0

(𝑡)|2 + 4|𝐶𝑁−𝑁0
𝑒𝑁−𝑁0

(𝑡)|2
+ 8|𝜁 (𝑡)|2 (54)

Since 𝑒𝑁−𝑁0
, 𝑒𝑁0

and 𝜁 converge also exponentially to zero,
then by applying the comparison lemma to (54), we con-
clude that 𝜃 will also converge exponentially to zero. On
the other hand, from (30) and (31), we can deduce that|𝜉 𝑁 (𝑡)|2 ≤ 2|𝜖𝑁 (𝑡)|2 + 2|𝛼(𝑡)|2|𝜃(𝑡)|2. Since both systems (32)
and (33) are ISS and |𝑝𝑁 | and |𝜙| are bounded, then |𝛼1| and|𝛼2| are also bounded. This allows us to conclude that |𝜉 𝑁 | is
also exponentially convergent to zero. Now let us consider the
prediction error

�̃�𝑛(𝑡) = 𝑒−𝜇𝑛 𝑟 𝜉 𝑛(𝑡) + ∫
𝑡

𝑡−𝑟

𝑒−𝜇𝑛(𝑡−𝑠)𝑝𝑛(𝑠)𝜃(𝑠)𝑑 𝑠 (55)

Since both 𝜉 𝑛 and 𝜃(𝑡) converge exponentially to zero and 𝑝𝑛 are
bounded terms, then we can say that there exist two positive con-
stants 𝑀0 and 𝜎0 such that |𝜃(𝑡)| + |𝜉 𝑛| ≤ 𝑀0𝑒−𝜎0 𝑡 , 𝑛 = 1, . . . , 𝑁 .
From this, we can deduce that we can derive the following
inequality for 𝑛 = 𝑁0 + 1, . . . , 𝑁

|�̃�𝑛(𝑡)| ≤ 𝑒−𝜇𝑛 𝑟|𝜉 𝑛(𝑡)| + 𝑀𝜙 𝑀0𝑒−𝜇𝑛 𝑡 ∫
𝑡

𝑡−𝑟

𝑒−(𝜎0−𝜇𝑛)𝑠 𝑑 𝑠 (56)

which gives us

|�̃�𝑛(𝑡)| ≤ 𝑒−𝜇𝑛 𝑟|𝜉 𝑛(𝑡)| + 𝑀𝜙 𝑀0𝑒−𝜇𝑛 𝑡 ∫
𝑡

𝑡−𝑟

𝑒−(𝜎0−𝜇𝑛)𝑠 𝑑 𝑠 (57)
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FIGURE 1 | Estimation errors for system (1) with delay 𝑟 = 6 and 𝜃 = 5.

and

|�̃�𝑛(𝑡)| ≤ 𝑒−𝜇𝑛 𝑟 𝑀0𝑒−𝜎0 𝑡 +
𝑀𝜙 𝑀0(𝑒(𝜎0−𝜇𝑛)𝑟 − 1)

𝜎0 − 𝜇𝑛

𝑒−𝜎0 𝑡 (58)

which means that

|�̃� 𝑁−𝑁0
(𝑡)|2 ≤ 2𝑒−2𝜎0 𝑡

𝑁∑
𝑛=𝑁0+1

(
𝑒−2𝜇𝑛 𝑟 𝑀 2

0 +
𝑀 2

𝜙
𝑀 2

0 (𝑒(𝜎0−𝜇𝑛)𝑟 − 1)2

(𝜎0 − 𝜇𝑛)2

)

On the hand, since 𝜁 (𝑡), 𝜃(𝑡), and 𝜉𝑁0
(𝑡) are exponentially vanish-

ing, we deduce from Lemma (1) that there exist positive constants
𝛼0, and 𝑀0 such that |�̂�

(0)
𝑁0
(𝑡) − col𝑁0

𝑛=1(𝑧𝑛(𝑡))| = |�̃� 𝑁0
|2 ≤ 𝑀0𝑒−𝛼0 𝑡.

and from Parseval’s equality, we can say that

||û(⋅, 𝑡) − 𝑢(⋅, 𝑡)||2
𝐻 1(0,1) =

𝑁∑
𝑖=1

𝜆𝑖 �̃�2
𝑖
(𝑡) +

∑
𝑛≥𝑁+1

𝜆𝑛 𝑧2
𝑛
(𝑡) (59)

Since
∑𝑁

𝑖=1𝜆𝑖 �̃�2
𝑖
(𝑡) ≤ 𝜆𝑁 |�̃� 𝑁 |2 and since

∑
𝑛≥𝑁+1 𝜆𝑛 𝑧2

𝑛
(𝑡) is expo-

nentially vanishing, then we can also conclude that the 𝐻 1 norm||û(⋅, 𝑡) − 𝑢(⋅, 𝑡)||𝐻 1(0,1) converges exponentially to zero.

Theorem 1. Consider system (1) with initial condition
𝑢0 ∈ 𝐻 1(0, 1), 𝑢0(1) = 0, and adaptive observer described by (16),
(17), (19), (20), (32), (33), and (44). Let 𝑁0 ∈ ℕ satisfy (10) and
𝑁 = max{𝑁0, 𝑁𝜙}. Let the vector of gains 𝐿𝑁0

= (𝑙1, . . . , 𝑙𝑁0
)𝑇

satisfy (37). Let the integer 𝜈𝑟 and the positive constant 𝛼 sat-
isfy (21). Then under persistent excitation conditions (46), the
norms ||�̃�(., 𝑡)||𝐻 1(0,1) and |𝜃(𝑡)| converge exponentially to zero.

Remark 4. Compared to the result of [13], we can easily
remark two important features: (i) Contrarily to the observer
proposed in [13], we cope with an arbitrary long constant delay,

provided that the integer 𝜈𝑟 is chosen sufficiently large, and
ensure exponential convergence of both state and parameter
estimation errors. (ii) Another important advantage of our
observer compared to [13] and [14] is in the fact that the number
of the observer’s gains in our observer is fixed by the number of
unstable modes 𝑁0, contrarily to the observer of [13] and [14],
which runs with 𝑁𝜙 gains. If 𝑁𝜙 is high, this implies a high
number of observer’s gains in [13] and [14], even if the number
of unstable modes is not important.

4 | Example

In this section we illustrate our result on system (1). We
consider 𝑞 = 3 and 𝜙1(𝑥, 𝑡) = cos(𝜋 𝑥∕2) + sin(𝑡) cos(3𝜋 𝑥∕2).
The output 𝑦 = 𝑢(0, 𝑡) + (2 − cos(10𝑡))𝜃. The condition (10)
gives us 𝑁0 >

1
2
+

√
3

𝜋
, then the smallest integer satisfying (10)

is 𝑁0 = 2. Given 𝑁𝜙 = 2, we deduce that the smallest integer is
𝑁 = 2. The simulations are performed with 𝑁0 = 2 and 𝑁 = 2,
𝜈𝑟 = 30, 𝐿 = (23.2, 1.1)𝑇 and 𝑟 = 6 (Figure 1) .

5 | Conclusion

In this paper, we presented a new finite-dimensional adaptive
observer for a class of linear parabolic systems with a free delay
at the output. Our algorithm ensures exponential convergence
to zero of both state and parameter estimation errors for a free
constant delay.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated
or analysed during the current study.
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