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Averaging-based stability of discrete-time delayed systems via
a novel delay-free transformation∗

Adam Jbaraa, Rami Katzb and Emilia Fridmana

Abstract—In this paper, we study, for the first time, the stability of
linear delayed discrete-time systems with small parameter ε > 0 and
rapidly-varying coefficients. Recently, an efficient constructive approach
to averaging-based stability via a novel delay-free transformation was
introduced for continuous-time systems. Our paper extends this approach
to discrete-time systems. We start by introducing a discrete-time change
of variables that leads to a perturbed averaged system. By employing
Lyapunov analysis, we derive Linear Matrix Inequalities (LMIs) for
finding the maximum values of the small parameter ε > 0 and delay
(either constant or time-varying) that guarantee exponential stability of
the original system. We show that differently from the continuous-time,
in the discrete-time, given any bounded delay, there exists a small enough
ε such that our LMIs are feasible (i.e. the system is exponentially stable).
Numerical examples illustrate the efficiency of the proposed approach.

I. INTRODUCTION

Averaging is considered as one of the most efficient methods to
deal with the stability of control systems with rapidly time-varying
almost periodic coefficients depending on a small parameter ε > 0
[2], [10], [13]. Different features of these systems has been widely
studied by the control community [7], [10], [11], [12], mainly for
their modern engineering applications [1], [4], [15], [17]. The key
idea behind the asymptotic averaging method is that the asymptotic
stability of the original rapidly-varying system is guaranteed for
small enough values of the parameter ε if the averaged system
is exponentially stable. However, a well-known drawback of the
classical averaging method is the lack of an efficient quantitative
upper bound on ε that preserves the stability of the original system.

Recently, a novel constructive time-delay approach to periodic
averaging of continuous-time systems has been presented in [6]. By
backward integration of the original system, the resulting system
is presented as a time-delay (neutral type) system with time-delays
of the length of the small parameter ε > 0. The stability of the
resulting system was shown to imply the stability of the original
system [6]. Then, direct Lyapunov-Krasovkii method was applied to
obtain LMI conditions which provide an efficient upper bound on the
small parameter ε that guarantees the stability of the original system
provided the corresponding averaged system is exponentially stable.
Extensions of this time-delay approach for input-to-state stability
(ISS) and L2-gain analysis of systems with constant/time-varying
delays were presented in [3], [6], [19]. Moreover, it was extended to
ISS analysis of perturbed discrete-time systems [18].

In the recent paper [9], a novel constructive approach for linear
continuous-time systems with rapidly-varying almost periodic coeffi-
cients was introduced. Differently from the time-delay approach, the
method of [9] relies on a novel non-delayed transformation which
yields simpler analysis and reduces the conservatism on the upper
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bounds of the system parameters. This approach was applied to
averaging of systems with both constant and time-varying delays.
For the discrete-time systems in the presence of delays, constructive
discrete-time results are still missing.

Note that there are no existing results (even qualitative) on aver-
aging of discrete-time systems in the presence of delays. In this paper,
we fill this gap by extending the approach of [9] to linear discrete-
time systems, including systems with constant or time-varying delays.
Although the fundamental ideas are inspired by the results of the
continuous case [9], construction of the appropriate transformations
and the subsequent Lyapunov analysis are not an immediate extension
from the continuous framework, but rather require significant adapt-
ation to the discrete-time case. Differently from [18], we consider a
new presentation of the linear discrete-time system, where the system
matrix is presented as a linear combination of a Hurwitz matrix and
constant matrices multiplied by scalar rapidly-varying terms with
zero average. We introduce a new discrete-time transformation of the
rapidly-varying coefficients. Then, by using Lyapunov analysis, we
obtain explicit LMI conditions which guarantee exponential stability
of the target system (and eventually the original system). Moreover,
we show that the feasibility of the LMIs is guaranteed for small
enough values of the system parameters. Furthermore, differently
from the continuous-time, given any bounded delay, there exist
small enough ε such that the LMIs are feasible (i.e. the system is
exponentially stable). Numerical examples demonstrate the efficiency
of the suggested method. A conference version of the paper, confined
to consideration of non-delayed systems and systems with constant
delays, will be presented at ECC 2024 [8].

Notation: Rn denotes the n-dimensional Euclidean space with
vector norm | · |, | · |1 is ℓ1 norm, Rn×m is the set of all n × m
real matrices with the induced matrix norm || · ||, 0n and In are the
zero matrix and the identity matrix of order n, respectively. Z+ is
the set of non-negative integers. The notation P > 0 for P ∈ Rn×n

means that P is symmetric and positive definite. The subdiagonal
elements of a symmetric matrix are denoted by ∗, the superscript T
denotes matrix transposition, and ⊗ denotes the Kronecker product.
For 0 < P ∈ Rn×n and x ∈ Rn, we write |x|2P = xTPx. For
two integers p and q with p ≤ q, the notation I[p, q] refers to the set
{p, p+ 1, ..., q} and we denote |w|[p,q] = maxs∈I[p,q] |ws|.

In the stability analysis below we will use the following:

Lemma 1. (Jensen’s inequality [5, Chapter 6]) For all k ∈ Z+ the
following inequality holds:

1

d
|

k−1∑
i=k−d

[xi+1 − xi]|2R ≤
k−1∑

i=k−d

|xi+1 − xi|2R. (1)

Lemma 2. (Reciprocally convex combination, [14], [5]) Given R >
0, for any G ∈ Rn×n such that the following inequality[

R G
∗ R

]
≥ 0, (2)
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holds. Then, [
1
α
R 0
0 1

1−α
R

]
≥
[
R G
∗ R

]
, ∀α ∈ (0, 1). (3)

II. STABILITY ANALYSIS VIA AVERAGING OF DISCRETE-TIME

SYSTEMS

Consider the discrete-time system:

xk+1 = [I + εA(k)]xk, k ∈ Z+, (4)

where xk ∈ Rn, A(k) : Z+ → Rn×n, ε > 0 is a small parameter.
We make the following assumption:
Assumption 1. The matrices A(k), k ∈ Z+ satisfy

A(k) = Aav +

N∑
i=1

ai(k)Ai, (5)

where Aav is a Hurwitz matrix and {ai(k)}Ni=1, k ∈ Z+ are T -
periodic with zero average i.e.

1

T

k+T−1∑
j=k

ai(j) = 0, ∀k ≥ 0, ∀i ∈ {1, 2, ..., N} . (6)

Remark 1. Every matrix A(k) can be presented as a linear com-
bination in the form (5). Moreover, assuming that the averages of ai

are zero poses no loss of generality, as we can subtract the averages
from the corresponding functions and modify the matrix Aav .
Remark 2. For simplicity only we consider T -periodic ai. Our
method is applicable to almost periodic ai, which satisfy

1

T

k+T−1∑
j=k

ai(j) = ∆ai(k), sup
k∈Z+

||∆ai(k)|| ≤ ∆ai

with small enough ∆ai . The approach is also extensible to ISS of
perturbed time-varying systems.

Using Assumption 1, we present (4) as

xk+1 − xk = ε(Aav +

N∑
i=1

ai(k)Ai)xk. (7)

In this paper, we will provide constructive LMI conditions for find-
ing an upper bound on ε that guarantees the exponential stability of
(4). We will derive LMIs by using two steps - system transformation
and Lyapunov analysis.

Step I: System Transformation. For each j ∈ {1, 2, ..., N}, let

ρj(k) := − ε

T

k+T−1∑
i=k

(k + T − i)aj(i). (8)

Since ai is a T -periodic function (whence bounded) by Assumption
1, one has ρj = O(ε). Taking into account (6) and (8), we obtain

ρj(k + 1)− ρj(k) = − ε
T

∑k+T
i=k+1(k + 1 + T − i)aj(i)

+ ε
T

∑k+T−1
i=k (k + T − i)aj(i) = εaj(k).

(9)

Introduce the change of variables

zk = xk −
N∑

j=1

ρj(k)Ajxk. (10)

For simplicity of presentation we will proceed with the case N = 2.
The general case follows the same arguments. Only minor modifica-
tions are required, which are related to the dimensions of the matrices.
This is similar to the continuous case (see Remark 2.7 in [9]).

Clearly, for small enough ε, the matrix In−
∑2

i=1 ρ(k)Ai is invert-
ible, whence the transformation (10) is also invertible. A sufficient

condition for this is given by the following inequality:

δ2 :=
1

2

2∑
i=1

εTai,M ||Ai|| < 1 (11)

where ai,M := supk∈Z |ai(k)|, i = 1, 2. Indeed, we have

sup
k∈Z+

||
2∑

i=1

ρi(k)Ai|| ≤ δ2 < 1, (12)

and by employing a Neumann series and (12), we obtain

sup
k∈Z+

∥∥∥∥∥∥
(
In −

2∑
i=1

ρ(k)Ai

)−1
∥∥∥∥∥∥ ≤ δ1 = (1− δ2)

−1. (13)

So, under inequality (11), we have

|xk| ≤ δ1|zk|, ∀k ∈ Z+, (14)

|zk| ≤ (1 + δ2)|xk|, ∀k ∈ Z+. (15)

Using equations (7), (9) and (10), we obtain

zk+1 − zk = εAavzk − ε
∑2

j=1

∑2
i=1 AjAiρj(k + 1)ai(k)xk

+ε
∑2

j=1 ρj(k)AavAjxk − ε
∑2

j=1 AjAavρj(k + 1)xk.
(16)

Denoting

A = [A1, A2], A1 = [A1A1, A1A2, A2A1, A2A2], (17)

Y(m)
ρ (k) = col{ρj(k +m− 1)xk}2j=1, m = 1, 2,

Yρ,a(k) = col{ρ1(k + 1)a1(k)xk, ρ1(k + 1)a2(k)xk, (18)

ρ2(k + 1)a1(k)xk, ρ2(k + 1)a2(k)xk},

the transformation (10) and system (16) can be presented as

zk = xk −AY(1)
ρ (k), (19)

zk+1 − zk = εAavzk + εAavAY(1)
ρ (k) (20)

−εA(I2 ⊗Aav)Y(2)
ρ (k)− εA1Yρ,a(k).

Note that since ρj = O(ε), equation (20) is of the form

zk+1 − zk = εAavzk +O(ε2).

Let
Hρ = col{h(1)

ρ , h
(2)
ρ },

Hρ,a = col{h(1,1)
ρ,a , h

(1,2)
ρ,a , h

(2,1)
ρ,a , h

(2,2)
ρ,a },

(21)

where h
(i)
ρ , h(i,j)

ρ,a , i, j = 1, 2 are bounds such that

ρ2i (k) ≤ h(i)
ρ , ρ2i (k + 1)a2

j (k) ≤ h(i.j)
ρ,a , i, j = 1, 2. (22)

Since ρi and aj are scalar functions, so are the upper bounds in
(22). Since ρj(k) = O(ε), one has in (21): |Hρ|1 = O(ε2) and
|Hρ,a|1 = O(ε2). Then, for any positive diagonal matrices Λ

(m)
ρ ∈

R2×2, m = 1, 2, Λρ,a ∈ R4×4 the following are obtained from (22):

Y(m)
ρ (k)T (Λ

(m)
ρ ⊗ In)Y(m)

ρ (k) ≤ |Λ(m)
ρ Hρ|1|xk|2,

YT
ρ,a(k)(Λρ,a ⊗ In)Yρ,a(k) ≤ |Λρ,aHρ,a|1|xk|2.

(23)

The matrices Λ
(1)
ρ ,Λ

(2)
ρ and Λρ,a will be decision variables in the

LMIs derived below (see (33), (34)).

Step II: Lyapunov Analysis. For stability analysis of (20) subject
to (19), we introduce the Lyapunov function

V (k) = |zk|2P , P > 0 (24)

and a decay rate α := 1− εθ, where 0 ≤ θ < 1/ε. Denote

Qθ(ε) := AT
avP + PAav + θP + εAT

avPAav. (25)
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Using (20), we obtain

V (k + 1)− αV (k) = ε|zk|2Qθ
+ ε2YT

ρ,a(k)AT
1 PA1Yρ,a(k)

+ε2Y(1),T
ρ (k)(AavA)TP (AavA)Y(1)

ρ (k)

+ε2Y(2),T
ρ (k)(I2 ⊗Aav)

TATPA(I2 ⊗Aav)Y(2)
ρ (k)

+2εzTk (I + εAav)
TP (AavA)Y(1)

ρ (k)

−2εzTk (I + εAav)
TPA(I2 ⊗Aav)Y(2)

ρ (k)
−2εzTk (I + εAav)

TPA1Yρ,a(k)

−2ε2Y(1),T
ρ (k)(AavA)TPA(I2 ⊗Aav)Y(2)

ρ (k)

−2ε2Y(1),T
ρ (k)(AavA)TPA1Yρ,a(k)

+2ε2Y(2),T
ρ (k)(I2 ⊗Aav)

TATPA1Yρ,a(k).

(26)

Remark 3. In (26) we want to obtain V (k+1)−αV (k) = ε|zk|2Qθ
+

O(ε2). The dominating term ε|zk|2Qθ
is essential for deriving LMIs

that are feasible for small ϵ > 0. In order to achieve the former
relation, α is taken in the form α = 1− εθ. Note that system (4) is
slow and its decay rate is small (see also [18]). Hence, the choice
α = 1− εθ is consistent with this observation.

Using (19), we present (26) as a quadratic in xk via:

|zk|2εQθ(ε)
= |xk|2εQθ(ε)

− 2xT
k εQθ(ε)AY(1)

ρ (k)

+εY(1),T
ρ (k)ATQθ(ε)AY(1)

ρ (k),
(27)

2εzTk (I + εAav)
TP (AavA)Y(1)

ρ (k) =

−εY(1),T
ρ (k)AT (I + εAav)

TP (AavA)Y(1)
ρ (k)

−εY(1),T
ρ (k)(AavA)P (I + εAav)AY(1)

ρ (k)

+2εxT
k (I + εAav)

TP (AavA)Y(1)
ρ (k),

(28)

−2εzTk (I + εAav)
TPA(I2 ⊗Aav)Y(2)

ρ (k) =

−2εxT
k (I + εAav)

TPA(I2 ⊗Aav)Y(2)
ρ (k)

+2εY(1),T
ρ (k)AT (I + εAav)

TPA(I2 ⊗Aav)Y(2)
ρ (k),

(29)

−2εzTk (I + εAav)
TPA1Yρ,a(k) =

−2εxT
k (I + εAav)

TPA1Yρ,a(k)

+2εY(1),T
ρ (k)AT (I + εAav)

TPA1Yρ,a(k).

(30)

Let

η(k) = col{xk,Y(1)
ρ (k),Y(2)

ρ (k),Yρ,a(k)},
W1 = |Λ(1)

ρ Hρ|1|xk|2 − Y(1),T
ρ (k)(Λ

(1)
ρ ⊗ In)Y(1)

ρ (k),

W2 = |Λ(2)
ρ Hρ|1|xk|2 − Y(2),T

ρ (k)(Λ
(2)
ρ ⊗ In)Y(2)

ρ (k),
W3 = |Λρ,aHρ,a|1|xk|2 − YT

ρ,a(k)(Λρ,a ⊗ In)Yρ,a(k).

(31)

Then, (23) implies that Wi ≥ 0 for all i = 1, 2, 3. Using (23)-(31)
and the S-procedure [5], we arrive at

V (k + 1)− αV (k) ≤ V (k + 1)− αV (k) + ε
∑3

m=1 Wm

≤ εηT (k)Φεη(k) ≤ 0,
(32)

Provided
Φε =

[
β1 B
∗ Ψε

]
< 0, (33)

where

Ψε =

ϕ1 ϕ2 ϕ3

∗ ϕ4 ε(I2 ⊗Aav)
TATPA1

∗ ∗ −(Λρ,a ⊗ In) + εAT
1 PA1

 ,

B =
[
β2 β3 β4

]
,

β1 = Qθ +
∑2

i=1 |Λ
(i)
ρ Hρ|1In + |Λρ,aHρ,a|1In,

β2 = −QθA+ (In + εAav)
TPAavA,

β3 = −(In + εAav)
TPA(I2 ⊗Aav),

β4 = −(In + εAav)
TPA1,

ϕ1 = −(Λ
(1)
ρ ⊗ In) +ATQθ(ε)A

+ε(AavA)TP (AavA)− (AavA)TP (I + εAav)A
−AT (In + εAav)

TP (AavA),

(34)

ϕ2 = AT (In + εAav)
TPA(I2 ⊗Aav)

−ε(AavA)TPA(I2 ⊗Aav),
ϕ3 = AT (In + εAav)

TPA1 − ε(AavA)TPA1,

ϕ4 = −(Λ
(2)
ρ ⊗ In) + ε(I2 ⊗Aav)

TATPA(I2 ⊗Aav)

Summarizing, we arrive at:
Theorem 1. Consider system (4) subject to Assumption 1, let
Hρ, Hρ,a be defined by (22). Given tuning parameters θ > 0 and
ε∗ > 0 subject to (11) and θε∗ < 1. Let there exist 0 < P ∈ Rn×n,
and diagonal positive matrices Λ

(1)
ρ ,Λ

(2)
ρ ∈ R2×2 and Λρ,a ∈ R4×4

such that LMI (33) with notations (25) and (34) holds for ε = ε∗.
Then, system (4) is exponentially stable with a decay rate

√
1− θε

for all ε ∈ (0, ε∗], namely, there exists a M > 0 such that for all
ε ∈ (0, ε∗], the solution of (4) initialized by x0 ∈ Rn satisfies

|xk|2 ≤ M(1− θε)k|x0|2, ∀k ∈ Z+. (35)

Moreover, if (11) and (33) hold with ε = ε∗ and θ = 0, then (4)
is exponentially stable for all ε ∈ (0, ε∗]. The inequalities (11) and
(33) are always feasible for small enough ε and θ.

Proof. The fact that given the feasibility of Φε for some θ, ε∗ implies
its feasibility for all ε < ε∗, follows from monotonicity of the matrix
Φε with respect to ε < ε∗ (meaning that as the small parameter
decreases, the eigenvalues of Φε are non-increasing).

Feasibility of Φε implies that for all

V (k + 1)− αV (k) ≤ 0 ⇒ V (k + 1) ≤ αk+1V (0).

Since λmin(P )|zk|2 ≤ V (k) ≤ λmax(P )|zk|2 for all k ∈ Z, we
have

|zk+1|2 ≤ λmax(P )

λmin(P )
αk+1|z0|2. (36)

Inequality (36) together with (14) and (15) yield

|xk+1|2 ≤ λmax(P )

λmin(P )
δ21(1 + δ2)

2(1− εθ)k+1|x0|2. (37)

Thus, we obtain (35) with M := λmax(P )
λmin(P )

δ21(1 + δ2)
2. For the LMI

(33) feasibility guarantees, we choose Λ(1)
ρ = Λ

(1)
ρ = λI2 and λρ,a =

λI4, where λ > 0. We begin by choosing θ = 0 (keep in mind
|Hρ,a|1 = O(ε2), |Hρ,a|1 = O(ε2)), since Aav is Hurwitz matrix,
there is 0 < P ∈ Rn such that β1 < 0 for small enough ε (see
(25), Assumption 1). It can be shown that Ψε < 0 for large enough
λ and small enough ε (the diagonal elements are linear and negative
in λ). Next, we apply Schur complement to Φε, whence Φε < 0 iff
β1− 1

λ
B(λ−1Ψε)

−1BT < 0. Note that −(λ−1Ψε)
−1 is bounded as

λ → ∞ (converges to the identity matrix), whereas B is independent
of λ. Thus, the feasibility of Φε is guaranteed.

Numerical Example: Consider a suspended pendulum with sus-
pension point that is subject to vertical vibrations of small amplitude
and high frequency. The discrete-time version of the linearized
model at the upper equilibrium position with a sampling period h
is described as (4) with

A(k) = h

[
cos(kh) 1

0.04− cos2(kh) −0.2− cos(kh)

]
. (38)

The matrix A(k) given by (38) can be presented as (5) with a1(h) =
cos(kh), a2(k) = cos(2kh) and

Aav =

[
0 h

h
25

− h
2

−h
5

]
, A1 =

[
h 0
0 −h

]
, A2 =

[
0 0

−h
2

0

]
. (39)

The corresponding sampling periods is h = π
20

and T = 40. We
consider θ ∈ {0, 0.01} and verify the LMI Φε∗ < 0 of Theorem
1 to obtain the maximal value ε∗ which guarantees the exponential
stability of system (4) with (38). With some simply calculations, it
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is easily shown that (11) holds for the obtained ε∗ (see Table I). As
seen from Table I, the resulting values of ε∗ are essentially larger
than those obtained in [18].

Method θ = 0 θ = 0.01

Yang, Zhang & Fridman 0.71 · 10−2 0.47 · 10−2

Theorem 1 2.696 ·10−2 1.840 ·10−2

Table I
MAXIMUM ε∗ PRESERVING THE LMI FEASIBILITY

Remark 4. Note that the significant improvement in the maximal
value of ε∗ is achieved due to the new system presentation (5) and
the novel transformation (10) which yield simpler analysis and reduce
the conservatism on the upper bounds of the system parameters.

III. STABILITY OF THE DISCRETE-TIME SYSTEMS WITH DELAYS

Using the new transformation, which is based on summation of the
rapidly varying coefficients only (and does not include the state inside
of the summation, as was done in the time-delay approach [18]), we
present the first stability conditions for discrete-time systems with
delays. These conditions are essentially more efficient for constant
than for time-varying delays.

We use the simple Lyapunov functionals and the corresponding
analysis following Chapter 6 in [5], which still lead to large delays
in the examples because the system under consideration is slow. Less
conservative results with essentially more complicated LMIs can be
derived by using recent analysis e.g. in [16], [20].

A. Constant Delay

Consider the system

xk+1 = (In + εA0)xk + εAD(k)xk−d, k ∈ Z+, (40)

where d is a positive integer.
Assumption 2. Assume that AD(k), k ∈ Z+ is of the form:

AD(k) = Ad +

Nd∑
i=1

ai(k)Ai, (41)

whereas {ai(k)}Nd
i=1 are T -periodic with the zero average (i.e. satisfy

(6)). In addition, we assume that A0 +Ad is a Hurwitz matrix.
As in Section II, we will derive constructive stability conditions

by using two steps - system transformation and Lyapunov analysis.
Step I: System Transformation. We modify the transformation

(10) to account for the delay:

zk = xk −
Nd∑
m=1

ρm(k)Amxk−d, k ≥ d. (42)

We will proceed with the case Nd = 2 for the simplicity of the
presentation. The general case follows the same arguments. Let

Aav := A0 +Ad, ξk := xk − xk−d, ∀k ∈ Z+.

By employing (6), (9), (40) - (42) we obtain

zk+1 − zk = εAavzk − εAdξk
+ε
∑2

m=1 AavAmρm(k)xk−d

−ε
∑2

m=1 AmA0ρm(k + 1)xk−d

−ε
∑2

m=1 AmAdρm(k + 1)xk−2d

−ε
∑2

m=1

∑2
i=1 AmAiρm(k + 1)ai(k − d)xk−2d,

(43)

Since ρj(k) = O(ε), equation (43) has the form

zk+1 − zk = εAavzk − εAdξk +O(ε2). (44)

Denote

Ya,d(k) = col{aj(k)xk−d}2j=1,

Y(m)
ρ,d (k) = col{ρj(k +m− 1)xk−d}2j=1, m = 1, 2,

Yρ,d(k) = col{Y(j)
ρ,d(k)}

2
j=1,

Yρ,2d(k) = col{ρj(k + 1)xk−2d}2j=1, (45)

Yρ,a,d(k) = col{ρ1(k + 1)a1(k − d)xk−2d,

ρ1(k + 1)a2(k − d)xk−2d, ρ2(k + 1)a1(k − d)xk−2d,

ρ2(k + 1)a2(k − d)xk−2d},
A = [A1, A2], A1 = [A1A1, A1A2, A2A1, A2A2], (46)

Ã = [A, 02×2, 02×2],Aρ,d = [AavA,−A(I2 ⊗A0)].

Then, (43) can be presented as

zk+1 − zk = εAavzk − εAdξk + εAρ,dYρ,d(k)
−εA(I2 ⊗Ad)Yρ,2d(k)− εA1Yρ,a,d(k),

(47)

whereas due to (40), (42) we have

xk+1 − xk = εAavxk − εAdξk−d + εAYa,d(k), (48)

zk = xk − ÃYρ,d(k). (49)

Let
Ha = col(h(1)

a , h(2)
a ) (50)

and Hρ, Hρ,a be as in (21), where h
(i)
a , h(i)

ρ , h(i,j)
ρ,a satisfy,

a2
i (k) ≤ h

(i)
a , ρ2i (k) ≤ h

(i)
ρ , ∀k ∈ Z+,

ρ2i (k + 1)a2
j (k − d) ≤ h

(i.j)
ρ,a , ∀i, j ∈ {1, 2}.

(51)

Since ρj(k) = O(ε), we have |Hρ|1 = O(ε2) and |Hρ,a|1 = O(ε2).
Then, for any diagonal positive matrices Λa,Λρ,2d ∈ R2×2 and
Λρ,a,Λρ,d ∈ R4×4 the following holds:

YT
a,d(k)(Λa ⊗ In)Ya,d(k) ≤ |ΛaHa|1|xk−d|2,

YT
ρ,d(k)(Λρ,d ⊗ In)Yρ,d(k) ≤ |Λρ,d(I2 ⊗Hρ)|1|xk−d|2,

YT
ρ,2d(k)(Λρ,2d ⊗ In)Yρ,2d(k) ≤ |Λρ,2dHρ|1|xk−2d|2,

YT
ρ,a,d(k)(Λρ,a ⊗ In)Yρ,a,d(k) ≤ |Λρ,aHρ,a|1|xk−2d|2.

(52)

The matrices Λa,Λρ,a, Λρ,d and Λρ,2d will be decision variables in
the LMIs derived below (see (66)).

Step II: Lyapunov Analysis. For stability analysis of (47) subject
to (49), let

VP (k) = |zk|2P , P > 0, (53)

VSm,md(k) =
∑k−1

i=k−md α
k−i−1|xi|2Sm

, Sm > 0, (54)

VR,d(k) = d
∑−1

i=−d

∑k−1
s=k+i α

k−s−1|xs+1 − xs|2R, R > 0 (55)

where m = 1, 2 and α := 1 − εθ is the desired decay rate with
0 ≤ θ < 1/ε. Introduce the Lyapunov function

V (k) = VP (k) + ε

(
2∑

m=1

VSm,md(k) + VR,d(k)

)
, (56)

Here VS1,d and VR,d compensate xk−d, whereas VS2,2d compensates
xk−2d in the stability analysis. Then,

VP (k + 1)− αVP (k) = ε|zk|2Qθ
+ ε2ξTk A

T
d PAdξk

+ε2Yρ,d(k)
TAT

ρ,dPAρ,dYρ,d(k)
+ε2Yρ,a,d(k)

TAT
1 PA1Yρ,a,d(k)

+ε2Yρ,2d(k)
T [A(I2 ⊗Ad)]

TP [A(I2 ⊗Ad)]Yρ,2d(k)
−2εzTk (I + εAav)

TPAdξk
+2εzTk (I + εAav)

TPAρ,dYρ,d(k)
−2εzTk (I + εAav)

TPA(I2 ⊗Ad)Yρ,2d(k)
−2εzTk (I + εAav)

TPA1Yρ,a,d(k)
−2ε2ξTk A

T
d PAρ,dYρ,d(k) + 2ε2ξTk A

T
d PA1Yρ,a,d(k)

+2ε2ξTk A
T
d PA(I2 ⊗Ad)Yρ,2d(k)

(57)
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−2ε2Yρ,d(k)
TAT

ρ,dPA(I2 ⊗Ad)Yρ,2d(k)
−2ε2Yρ,d(k)

TAT
ρ,dPA1Yρ,a,d(k)

+2ε2Yρ,2d(k)
T [A(I2 ⊗Ad)]

TPA1Yρ,a,d(k).

Here Qθ is defined in (25). Substitute zk = xk−ÃYρ,d(k), we have

|zk|2Qθ
= |xk|2Qθ

+ |Yρ,d(k)|2ÃTQθÃ
− 2xT

k QθÃYρ,d(k), (58)

−2εzTk (In + εAav)
TP [Adξk −Aρ,dYρ,d(k)

+A(I2 ⊗Ad)Yρ,2d(k) +A1Yρ,a,d(k)] =

−2ε[xk − ÃYρ,d(k)]
T (I + εAav)

TP · [Adξk
−Aρ,dYρ,d(k) +A(I2 ⊗Ad)Yρ,2d(k) +A1Yρ,a,d(k)].

(59)

Note that

VS1,d(k + 1)− αVS1,d(k) = (1− αd)|xk|2S1
(60)

−αd|ξk|2S1
+ 2αdxT

k S1ξk,

VS2,2d(k + 1)− αVS2,2d(k) = |xk|2S2
− α2d|xk−2d|2S2

. (61)

Let

L = [Aav,−Ad, 0n×4n, 0n×2n,A, 0n×4n],
ηk = col{xk, ξk,Yρ,d(k),Yρ,2d(k),Ya,d(k),Yρ,a,d(k)}.

(62)

By Jensen’s inequality (1), we obtain

VR,d(k + 1)− αVR,d(k) ≤ ε2d2ηTk,dL
TRLηk,d − αdξTk Rξk. (63)

Denote

Π(1) = diag{0,Λρ,d,Λρ,2d,Λa,Λρ,a} ⊗ In,

Π = diag{0n,Π(1)}, λd = |ΛaHa|1 + |Λρ,d(I2 ⊗Hρ)|1,
λ2d = |Λρ,2dHρ|1 + |Λρ,aHρ,a|1,

W = −εηT
k Πηk + ελ2d|xk−2d|2 + ελd|xk − ξk|2.

(64)

Inequality (52) implies that W ≥ 0. Using (52)-(64) and the S-
procedure, we arrive at

V (k + 1)− αV (k) ≤ V (k + 1)− αV (k) +W
≤ εηT

k (Θε,d + ε2d2LTRL)ηk
+εxT

k−2d(−α2dS2 + λ2dIn)xk−2d ≤ 0,
(65)

provided

Θε,d + ε2d2LTRL < 0, −α2dS2 + λ2dIn < 0, (66)

where

Θε,d =

[
β1 B
∗ Ψε,d

]
, B =

[
β2 β3 β4 0n×2n β5

]
,

Ψε,d = −Π(1) +


ω1 ω2 ω3 0n×2n εAT

d PA1

∗ ω4 ω5 04n×2n ω6

∗ ∗ ω7 02n×2n ω8

∗ ∗ ∗ 02n×2n 02n×4n

∗ ∗ ∗ ∗ εAT
1 PA1

 ,

ω1 = εAT
d PAd − αd(S1 +R) + λdIn, α = 1− θε,

ω2 = AT
d P (In + εAav)Ã − εAT

d PAρ,d,
ω3 = εAT

d PA(I2 ⊗Ad),

ω4 = εAT
ρ,dPAρ,d − ÃT (In + εAav)

TPAρ,d

+ÃTQθÃ − AT
ρ,dP (In + εAav)Ã,

ω5 = −εAT
ρ,dPA(I2 ⊗Ad)

+ÃT (In + εAav)
TPA(I2 ⊗Ad),

ω6 = −εAT
ρ,dPA1 + ÃT (In + εAav)

TPA1,
ω7 = ε[A(I2 ⊗Ad)]

TP [A(I2 ⊗Ad)],
ω8 = ε[A(I2 ⊗Ad)]

TPA1,

β1 = Qθ + (1− αd)S1 + S2 + λdIn,

β2 = αdS1 − (In + εAav)
TPAd − λdIn,

β3 = −QθÃ+ (In + εAav)
TPAρ,d,

β4 = −(In + εAav)
TPA(I2 ⊗Ad),

β5 = −(In + εAav)
TPA1,

(67)

Summarizing, we arrive at:
Theorem 2. Consider system (40) subject to Assumption 2, let
Ha, Hρ, Hρ,a, be defined by (51). Given positive tuning parameters
θ, d∗, and ε∗ subject to δ2 < αd∗ and θε∗ < 1. Let there
exist 0 < P, S1, S2, R ∈ Rn×n, and diagonal positive matrices
Λa,Λ

(1)
ρ ,Λ

(2)
ρ ,Λρ,2d ∈ R2×2 and Λρ,a ∈ R4×4 such that LMIs (66)

with notation (25) and (67) holds with ε = ε∗ and d = d∗. Then
system (40) is exponentially stable with a decay rate

√
1− θε for all

ε ∈ (0, ε∗] and 0 ≤ d ≤ d∗. Namely, there exists M > 0 such that
for all ε ∈ (0, ε∗] and 0 ≤ d ≤ d∗, the solution of (40) initialized
at {xj}0j=−d satisfies

|xk|2 ≤ M |x|2[−d,0] (1− θε)k, ∀k ∈ Z+. (68)

Moreover, if LMIs (66) and δ2 < αd hold with ε = ε∗, d = d∗

and θ = 0, then (40) is exponentially stable for all ε ∈ (0, ε∗] and
0 ≤ d ≤ d∗. Also, given any d, LMI (66) and inequality δ2 < αd

are always feasible for small enough ε and θ.

Proof. The fact that feasibility of (66) and δ2 < αd with ϵ∗, d∗

implies feasibility for all ε < ε∗, d < d∗, and δ2 < αd with respect
to ε < ε∗, d < d∗.

Feasibility of (66), and δ2 < αd implies that for all d ≤ k ∈ Z+,

V (k + 1)− αV (k) ≤ 0 ⇒ V (k + 1) ≤ αk+1−dV (d),

V (d) = |zd|2P +
∑2

m=1

∑d−1
i=d−m·d α

d−i−1|xi|2Sm

+d
∑−1

i=−d

∑d−1
s=d+i α

d−s−1|xs+1 − xs|2R.
(69)

Also, V (k) ≥ σmin(P )|zk|2, for any d ≤ k ∈ Z+. Thus, there exists
some M1 > 0 such that

|zk|2 ≤ M1 |x|2[−d,0] α
k−d, d ≤ k ∈ Z+. (70)

To conclude the same for the solution xk of the system (40), for any
j ∈ Z+, we denote Xj = |x|2[jd,(j+1)d]. From (11), (42) and (70),
we find that

Xj+1 ≤ M2α
jd + δ2Xj , j ∈ Z+,

where M2 = M1 |x|2[−d,0]. Set Y1 = X1 and consider the linear
difference equation

Yj+1 = M2α
jd + δ2Yj , j ∈ Z+. (71)

By induction, we obtain Xj ≤ Yj for all j ∈ Z+. Moreover, the
solution of (71) is given by Yj = µdα

(j−1)d + δj−1
2 (X1 −µd), j ∈

Z+, where µd = M2α
α−δ2

. Note that Yk is decreasing. Let k ∈ Z+ such
that k ∈ I[jd, (j + 1)d]. Then

|xk|2 ≤ Xj ≤ δj−1
2 (X1 − µd) + µdα

jd−d

≤ δ
k−d
d

2
(X1−µd)

δ2
+ µdα

−dαk−d

≤
(

(X1−µd)
δ2

+ µdα
−d
)
αk−d, ∀k ≥ dM

where the last inequality follows from δ2 < αd. In addition, since xk

is bounded on the interval [0, d], inequality (68) holds for all k ∈ Z+.
For the LMI feasibility guarantees for given d, we choose Λa =

Λρ,2d = λ1I2, Λρ,a = Λρ,d = λ1I4, R = λ1In, S1 = λdIn, where
λ1 > λd, S2 = λ2In where λ2 = 2λ2d (keep in mind that λ2d =
O(ε2)). For θ = 0 (so α = 1), the inequality −α2dS2 + λ2dIn < 0
holds, and also Θε,d is independent of d whereas ε2d2LTRL and
δ2 < αd (since δ2 = O(ε)) are small for enough small ε. So, it is
sufficient to prove that Θε,d < 0. Since Aav is Hurwitz matrix, there
is a 0 < P ∈ Rn such that β1 < 0 for small enough ε. It is easily seen
that Ψε,d < 0 for large enough λ1 and small enough ε > 0. Next,
we apply Schur complement with respect to Θε,d, whence Θε,d < 0
iff β1 − 1

λ1
B(λ−1

1 Ψε,d)
−1BT < 0. Note that −(λ−1

1 Ψε,d)
−1 is

bounded as λ1 → ∞ (converges to the identity matrix), whereas B
and β1 are independent of λ1 implying the feasibility of Θε,d
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B. Time-Varying Delays

Consider the system

xk+1 = (In + εA0)xk + εAD(k)xk−dk , k ∈ Z+, (72)

where dk ≤ dM , ∀k ∈ Z+ and dM is an integer. Assume
that Assumption (2) holds with Nd = 2 (for simplicity of the
presentation).

Differently from the constant delay, for the time-varying delay we
use the same transformation (10) as for the non-delayed case (this
follows the analysis in the continuous-time delayed case [9]).

Remark 5. Note that one can choose a different delayed transform-
ation (for example the one given by (42), where d is changed by
dk). This may require further constraints on delay variation and will
essentially complicate the analysis and the resulting LMIs.

We will derive constructive stability conditions by using two steps
- system transformation and Lyapunov analysis.

Step I: System Transformation. Denote

ξk = xk−dk − xk, νk = xk−dM − xk−dk .

Employing (10) and (72) we obtain the following expression

zk+1 − zk = εAavzk + εAdξk + ε
∑2

m=1 am(k)Amξk
−ε
∑2

m=1 ρm(k + 1)AmAavxk

−ε
∑2

m=1 ρm(k + 1)AmAdξk
+ε
∑2

m=1 ρm(k)AavAmxk

−ε
∑2

m=1

∑2
i=1 ρm(k + 1)ai(k)AmAixk

−ε
∑2

m=1

∑2
i=1 ρm(k + 1)ai(k)AmAiξk.

(73)

Since ρj(k) = O(ε), equation (73) has the form

zk+1 − zk = εAavzk + εAdξk + ε

2∑
m=1

am(k)Amξk +O(ε2). (74)

Differently from the constant case (see equation (44)), for time-
varying delay case, there are additional terms ε

∑2
m=1 am(k)Amξk

of order O(ε) (see equation (74)). Let Y(1)
ρ (k), Y(2)

ρ (k) and Yρ,a(k)
be as in (17), (18). Denote

Ya(k) = col{aj(k)xk}2j=1,Za(k) = col{aj(k)ξk}2j=1,

Yρ(k) = col{Y(j)
ρ (k)}2j=1,Zρ(k) = col{ρj(k + 1)ξk}2j=1,

Zρ,a(k) = col{ρ1(k + 1)a1(k)ξk, ρ1(k + 1)a2(k)ξk,
ρ2(k + 1)a1(k)ξk, ρ2(k + 1)a2(k)ξk}.

Then, equation (72) can be presented as

zk+1 − zk = εAavzk + εAρYρ(k)− εA1Yρ,a(k) + εAdξk
+εAZa(k)− εA(I2 ⊗Ad)Zρ(k)− εA1Zρ,a(k),

(75)
whereas due to (10) and (73), we obtain

zk = xk − ÃYρ(k), (76)

xk+1 − xk = εAavxk + εAYa(k) + εAdξk + εAZa(k), (77)

where A, A1, Ã, Aρ,d as defined in (17), (18), (46). Let Ha, Hρ,
Hρ,a be as in (21), (50), where h

(i)
a and h

(i)
ρ , h

(i,j)
ρ,a satisfy the

inequalities (22) and (51) respectively. Since ρj(k) = O(ε), we have
|Hρ|1 = O(ε2) and |Hρ,a|1 = O(ε2). Then, for any diagonal posit-
ive matrices ΛYa ,ΛZa ,ΛZρ ∈ R2×2 and ΛYρ ,ΛYρ,a ,ΛZρ,a ∈ R4×4

the following holds:

Ya(k)
T (ΛYa ⊗ In)Ya(k) ≤ |ΛYaHa|1|xk|2,

Za(k)
T (ΛZa ⊗ In)Za(k) ≤ |ΛZaHa|1|ξk|2,

Yρ(k)
T (ΛYρ ⊗ In)Yρ(k) ≤ |ΛYρ(I2 ⊗Hρ)|1|xk|2,

Zρ(k)
T (ΛZρ ⊗ In)Zρ(k) ≤ |ΛZρHρ|1|ξk|2,

Yρ,a(k)
T (ΛYρ,a ⊗ In)Yρ,a(k) ≤ |ΛYρ,aHρ,a|1|xk|2,

Zρ,a(k)
T (ΛZρ,a ⊗ In)Zρ,a(k) ≤ |ΛZρ,aHρ,a|1|ξk|2.

The matrices ΛYa ,ΛZa ,ΛZρ ∈ R2×2 and ΛYρ ,ΛYρ,a ,ΛZρ,a ∈
R4×4 will be decision variables in the LMIs below (see (87), (88)).
Step II: Lyapunov Analysis. For stability analysis of (75) subject
to (76), choose the LK functional

V (k) = VP (k) + ε (VS,dM (k) + VR,dM (k)) , ∀k ≥ dM , (78)

where VP (k), VS,dM (k) and VR,dM (k) are as defined in (53), (63).
Introduce the decay rate α := 1− εθ, where 0 ≤ θ < 1/ε. Then,

VP (k + 1)− αVP (k) = ε|zk|2Qθ
+ ε2Yρ(k)

TAT
ρ PAρYρ(k)

+ε2Yρ,a(k)
TAT

1 PA1Yρ,a(k) + ε2ξTk A
T
d PAdξk

+ε2Zρ(k)
T [A(I2 ⊗Ad)]

TP [A(I2 ⊗Ad)]Zρ(k)
+ε2Za(k)

TATPAZa(k) + ε2Zρ,a(k)
TAT

1 PA1Zρ,a(k)
+2εzTk (I + εAav)

TPAdξk − 2εzTk (I + εAav)
TPA1Yρ,a(k)

+2εzTk (I + εAav)
TPAρYρ + 2εzTk (I + εAav)

TPAZa(k)
−2εzTk (I + εAav)

TPA(I2 ⊗Ad)Zρ(k)
−2εzTk (I + εAav)

TPA1Zρ,a(k) + 2ε2Yρ(k)
TAT

ρ PAdξk
−2ε2Yρ(k)

TAT
ρ PA1Yρ,a(k) + 2ε2Yρ(k)

TAT
ρ PAZa(k)

−2ε2Yρ(k)
TAT

ρ PA(I2 ⊗Ad)Zρ(k)
−2ε2Yρ(k)

TAT
ρ PA1Zρ,a(k)− 2ε2Yρ,a(k)

TAT
1 PAZa(k)

+2ε2Yρ,a(k)
TAT

1 PA(I2 ⊗Ad)Zρ(k)
+2ε2Yρ,a(k)

TAT
1 PA1Zρ,a(k) + 2ε2ξTk A

T
d PAZa(k)

−2ε2ξTk A
T
d PA(I2 ⊗Ad)Zρ(k)− 2ε2ξTk A

T
d PA1Zρ,a(k)

−2ε2Za(k)
TATPA(I2 ⊗Ad)Zρ(k)

−2ε2Za(k)
TATPA1Zρ,a(k)− 2ε2Yρ,a(k)

TAT
1 PAdξk

+2ε2Zρ(k)
T [A(I2 ⊗Ad)]

TPA1Zρ,a(k),

(79)

where Qθ is given by (25). Substitute zk = xk − ÃYρ(k), we get

|zk|2Qθ
= |xk|2Qθ

+ |Yρ(k)|2ÃTQθÃ
− 2xT

k QθÃYρ(k), (80)

2εzTk (I + εAav)
TP [AρYρ −A1Yρ,a(k) +Adξk +AZa(k)

−A(I2 ⊗Ad)Zρ(k)−A1Zρ,a(k)] = (81)

2ε
(
xk − ÃYρ(k)

)T
(I + εAav)

TP [AρYρ −A1Yρ,a(k) +

Adξk +AZa(k)−A(I2 ⊗Ad)Zρ(k)−A1Zρ,a(k)].

We find further

VS,dM (k + 1)− αVS,dM (k) = (1− αdM )|xk|2S − αdM |ξk|2S
−αdM |νk|2S − 2αdMxT

k Sξk − 2αdMxT
k Sνk − 2αdM ξTk Sνk.

(82)
Let

L = [Aav, Ad, 0n, 0n×4n,A, 0n×4n, 0n×2n,A, 0n×4n],
ηk = col{xk, ξk, νk,Yρ(k),Ya(k),Yρ,a(k),

Zρ(k),Za(k),Zρ,a(k)},
(83)

By Jensen’s inequality (1) and Park’s inequality (3), we obtain

VR,dM (k + 1)− αVR,dM (k) ≤ ε2d2MηT
k LTRLηk

−αdM

[
ξk
νk

]T [
R G
∗ R

] [
ξk
νk

]
,

(84)

where 0 < R and G ∈ Rn×n satisfy LMI (2). Denote

λ
(1)
0 = |ΛYρHρ|1 + |ΛYaHa|1 + |ΛYρ,aHρ,a|1,

λ
(2)
0 = |ΛZρHρ|1 + |ΛZaHa|1 + |ΛZρ,aHρ,a|1,

Σ
(1)
0 = λ

(1)
0 In,Σ

(2)
0 = λ

(2)
0 In,

Π(1) = diag{0, 0,ΛYρ ,ΛYa ,ΛYρ,a ,ΛZρ ,ΛZa ,ΛZρ,a} ⊗ In,

Σ0 = diag{Σ(1)
0 ,Σ

(2)
0 , 0n, 04n, 02n, 04n, 02n, 02n, 04n},

Σ1 = diag{0n,Π(1)}, W := εηT
k (Σ0 − Σ1)ηk.

(85)

Then, (78) implies that W ≥ 0. Using (78)-(85) and the S-procedure,
we arrive at

V (k + 1)− αV (k) ≤ V (k + 1)− αV (k) +W
≤ εηT

k (Θε,dM + ε2d2MLTRL)ηk ≤ 0,
(86)
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provided (2) and the following inequality hold:

Θε,dM + ε2d2MLTRL < 0, (87)

where

Θε,dM =

[
β1 B
∗ Ψε,dM

]
,

B = [β2, β3, β4, 0n×2n, β6, β7, β8, β9],

β1 = Qθ + (1− αdM )S +Σ
(1)
0 ,

β2 = −αdMS + (I + εAav)
TPAd,

β3 = −αdMS, β4 = −QθÃ+ (I + εAav)
TPAρ,

β6 = −(I + εAav)
TPA1,

β7 = −(I + εAav)
TPA(I2 ⊗Ad),

β8 = (I + εAav)
TPA, β9 = −(I + εAav)

TPA1,

Ψε,dM = −Π(1) +

Ψ
(1)
ε,dM

Ψ
(2)
ε,dM

Ψ
(3)
ε,dM

∗ Ψ
(4)
ε,dM

Ψ
(5)
ε,dM

∗ ∗ Ψ
(6)
ε,dM

 ,

Ψ
(1)
ε,dM

=

[
ω1 −αdM (S +G)

∗ −αdM (S +R)

]
,

Ψ
(2)
ε,dM

=

[
ω2 0n×2n −εAT

d PA1

0n×4n 0n×2n 0n×4n

]
,

Ψ
(3)
ε,dM

=

[
−εAT

d PA(I2 ⊗Ad) εAT
d PA −εAT

d PA1

0n×2n 0n×2n 0n×4n

]
,

Θ
(4)
ε,dM

=

ω3 04n×2n ω4

∗ 02n×2n 02n×4n

∗ ∗ εAT
1 PA1

 ,

Θ
(5)
ε,dM

=

 ω5 ω6 ω7

02n×2n 02n×2n 02n×4n

εAT
1 PA(I2 ⊗Ad) −εAT

1 PA εAT
1 PA1

 ,

Θ
(6)
ε,dM

=

ω8 ω9 ε[A(I2 ⊗Ad)]
TPA1

∗ εATPA −εATPA1

∗ ∗ εAT
1 PA1

 ,

ω1 = εAT
d PAd − αdM (S +R) + Σ

(2)
0 ,

ω2 = −AT
d P (I + εAav)Ã+ εAT

d PAρ,

ω3 = εAT
ρ PAρ − ÃT (I + εAav)

TPAρ

−AT
ρ P (I + εAav)Ã+ ÃTQθÃ,

ω4 = −εAT
ρ PA1 + ÃT (I + εAav)

TPA1,
ω5 = −εAT

ρ PA(I2 ⊗Ad)

+ÃT (I + εAav)
TPA(I2 ⊗Ad),

ω6 = εAT
ρ PA− ÃT (I + εAav)

TPA,

ω7 = −εAT
ρ PA1 + ÃT (I + εAav)

TPA1,
ω8 = ε[A(I2 ⊗Ad)]

TP [A(I2 ⊗Ad)],
ω9 = −ε[A(I2 ⊗Ad)]

TPA.

(88)

Summarizing, we arrive at:

Theorem 3. Consider the system (72) subject to Assumption 2, let
Ha, and Hρ, Hρ,a be given by (22) and (51), respectively. Given
positive tuning parameters θ, d∗M , and ε∗ subject to (11) and θε∗ <
1. Let there exist 0 < P, S,R ∈ Rn×n, G ∈ Rn×n, and positive
diagonal matrices ΛYa ,ΛZa ,ΛZρ ∈ R2×2 and ΛYρ ,ΛYρ,a ,ΛZρ,a ∈
R4×4 such that LMIs (2) and (87) with notations (25) and (88) hold
with ε = ε∗ and dM = d∗M . Then system (72) is exponentially stable
with a decay rate

√
1− θε for all ε ∈ (0, ε∗] and 0 ≤ dk ≤ d∗M ,

∀k ∈ Z+. Namely, there exists M > 0 such that for all ε ∈ (0, ε∗]
and 0 ≤ dk ≤ dM , the solution of (72) initialized by {xj}0j=−dM

satisfies

|xk|2 ≤ M |x|2[−dM ,0](1− θε)k, ∀k ∈ Z+. (89)

Moreover, if LMIs (2) and (87) hold with ε = ε∗, dM = d∗M and
θ = 0, then (72) is exponentially stable for all ε ∈ (0, ε∗] and
0 ≤ dM ≤ d∗M . Also, given any dM , the inequalities (2) and (87)
are always feasible for small enough ε and θ.

Proof. The fact that feasibility of (87) with θ, ε∗, d∗M implies its
feasibility for all ε < ε∗, dM < d∗M , follows from monotonicity of
(87) with respect to ε < ε∗, dM < d∗M .

Feasibility of (87) implies that for all

V (k + 1)− αV (k) ≤ 0 ⇒ V (k + 1) ≤ αk+1−dMV (dM ), (90)

V (dM ) = |zdM |2P +
∑dM−1

i=0 αdM−i−1|xi|2S
+dM

∑−1
i=−dM

∑dM−1
s=dM+i α

dM−s−1|xs+1 − xs|2R.
(91)

Also, V (k) ≥ σmin(P )|zk|2, for any dM ≤ k ∈ Z+. Thus, there
exists a constant M̄ > 0 such that

|zk|2 ≤ M̄ |x|2[−dM ,0]α
k−dM , dM ≤ k ∈ Z+. (92)

From (14), (15) and (92), we find that

|xk|2 ≤ M̄δ21 |x|2[−dM ,0]α
k−dM , (93)

for all k ≥ dM . In addition, since xk is bounded on the interval
[0, d], inequality (89) holds for all k ∈ Z+.

For the LMI feasibility guarantees for given dM , we choose ΛYa =
ΛZa = ΛZρ = λI2, ΛYρ = ΛYρ,a = ΛZρ,a = λI4, R = λI ,
S = εI and G = 0, where λ > 2max{λ(1)

0 , λ
(2)
0 }. Thus, LMI (2)

is feasible. For θ = 0 (so α = 1), Θε,dM is independent of dM
whereas ε2d2MLTRL is small for small enough ε. So, it is sufficient
to prove that Θε,dM < 0. Since Aav is Hurwitz matrix, there exists
0 < P ∈ Rn such that β1 < 0 for small enough ε. It is easily seen
that Ψε,dM < 0 for large enough λ and small enough ε > 0. Next, we
apply Schur complement with respect to Θε,dM , whence Θε,dM < 0
iff β1 − 1

λ
B(λ−1Ψε,dM )−1BT < 0. Note that −(λ−1Ψε,dM )−1 is

bounded as λ → ∞ (converges to the identity matrix), whereas B and
β1 are independent of λ implying the feasibility of Θε,dM < 0.

Numerical Example: (Stabilization by fast switching) Let

AD(k) =

{
A1, k ∈ [100nε, 100(n+ 0.4)ε),

A2, k ∈ [100(n+ 0.4)ε, 100(n+ 1)ε),
(94)

and

A1 = 10−1

[
−1 0.6
−0.6 0.4

]
, A2 = 10−1

[
0.2 −0.4
0.4 1

]
,

Ad = 10−1

[
−0.28 0

0 −0.44

]
, A0 = 0.

(95)

Here, AD(k) can be presented as (41) with A0, A1, A2 and Ad given
by (95) and

a1(k) =

{
0.6, k ∈ [100nε, 100(n+ 0.4)ε),

−0.4, k ∈ [100(n+ 0.4)ε, 100(n+ 1)ε),

a2(k) =

{
−0.6, k ∈ [100nε, 100(n+ 0.4)ε),

0.4, k ∈ [100(n+ 0.4)ε, 100(n+ 1)ε),

(96)

We consider θ ∈ {0, 0.01}, ε ∈ {0.05, 0.1}. Note that with some
simple calculations, it is easily shown that (11) holds for ε = 0.05
and ε = 0.1. We consider systems (40) and (72) with constant and
time-varying delays respectively, and verify the LMIs of Theorems 2
and 3, to obtain the maximal values of d and dM which preserve the
stability. The results are given in Table II. Clearly smaller ε allows for
larger delays. Moreover, for dM = 153 and θ = 0, we found that the
LMIs of Theorem 3 are feasible for ε∗ = 0.0075, illustrating that the
LMIs are feasible for large time-varying delays provided ε is small
enough. Finally, simulations of solutions for ε = 0.05 show stability
for constant delays less or equal to 715 that illustrates conservatism
of the LMI result with maximum delay 153.
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Method θ
ε

0.05 0.1

Theorem 2 - Constant Delay - d∗
0 153 75

0.01 135 66

Theorem 3 - Time-varying Delay - d∗M
0 23 11

0.01 19 9

Table II
MAXIMUM d∗ AND d∗M PRESERVING THE LMI FEASIBILITY.

IV. CONCLUSION

This paper develops a novel constructive approach to averaging for
stability of discrete-time linear delayed systems with rapidly-varying
periodic coefficients. We proposed a novel system presentation and
state transformation that leads to a perturbed averaged system.
Further, by employing a direct Lyapunov method, explicit LMI
conditions for exponential stability were derived. The LMIs provide
upper bounds on the small parameters that preserve exponential
stability of the original system. Moreover, our LMIs are feasible for
any bounded delay provided ε is small enough. The results may be
further improvement in the future, and applied to various averaging-
based control problems including extremum seeking.
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