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Averaging-based stability of discrete-time delayed systems via
a novel delay-free transformation®

Adam Jbara®, Rami Katz? and Emilia Fridman®

Abstract—In this paper, we study, for the first time, the stability of
linear delayed discrete-time systems with small parameter ¢ > 0 and
rapidly-varying coefficients. Recently, an efficient constructive approach
to averaging-based stability via a novel delay-free transformation was
introduced for continuous-time systems. Our paper extends this approach
to discrete-time systems. We start by introducing a discrete-time change
of variables that leads to a perturbed averaged system. By employing
Lyapunov analysis, we derive Linear Matrix Inequalities (LMlIs) for
finding the maximum values of the small parameter ¢ > 0 and delay
(either constant or time-varying) that guarantee exponential stability of
the original system. We show that differently from the continuous-time,
in the discrete-time, given any bounded delay, there exists a small enough
€ such that our LMIs are feasible (i.e. the system is exponentially stable).
Numerical examples illustrate the efficiency of the proposed approach.

I. INTRODUCTION

Averaging is considered as one of the most efficient methods to
deal with the stability of control systems with rapidly time-varying
almost periodic coefficients depending on a small parameter € > 0
[2], [10], [13]. Different features of these systems has been widely
studied by the control community [7], [10], [11], [12], mainly for
their modern engineering applications [1], [4], [15], [17]. The key
idea behind the asymptotic averaging method is that the asymptotic
stability of the original rapidly-varying system is guaranteed for
small enough values of the parameter ¢ if the averaged system
is exponentially stable. However, a well-known drawback of the
classical averaging method is the lack of an efficient quantitative
upper bound on ¢ that preserves the stability of the original system.

Recently, a novel constructive time-delay approach to periodic
averaging of continuous-time systems has been presented in [6]. By
backward integration of the original system, the resulting system
is presented as a time-delay (neutral type) system with time-delays
of the length of the small parameter ¢ > 0. The stability of the
resulting system was shown to imply the stability of the original
system [6]. Then, direct Lyapunov-Krasovkii method was applied to
obtain LMI conditions which provide an efficient upper bound on the
small parameter ¢ that guarantees the stability of the original system
provided the corresponding averaged system is exponentially stable.
Extensions of this time-delay approach for input-to-state stability
(ISS) and Lo-gain analysis of systems with constant/time-varying
delays were presented in [3], [6], [19]. Moreover, it was extended to
ISS analysis of perturbed discrete-time systems [18].

In the recent paper [9], a novel constructive approach for linear
continuous-time systems with rapidly-varying almost periodic coeffi-
cients was introduced. Differently from the time-delay approach, the
method of [9] relies on a novel non-delayed transformation which
yields simpler analysis and reduces the conservatism on the upper
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bounds of the system parameters. This approach was applied to
averaging of systems with both constant and time-varying delays.
For the discrete-time systems in the presence of delays, constructive
discrete-time results are still missing.

Note that there are no existing results (even qualitative) on aver-
aging of discrete-time systems in the presence of delays. In this paper,
we fill this gap by extending the approach of [9] to linear discrete-
time systems, including systems with constant or time-varying delays.
Although the fundamental ideas are inspired by the results of the
continuous case [9], construction of the appropriate transformations
and the subsequent Lyapunov analysis are not an immediate extension
from the continuous framework, but rather require significant adapt-
ation to the discrete-time case. Differently from [18], we consider a
new presentation of the linear discrete-time system, where the system
matrix is presented as a linear combination of a Hurwitz matrix and
constant matrices multiplied by scalar rapidly-varying terms with
zero average. We introduce a new discrete-time transformation of the
rapidly-varying coefficients. Then, by using Lyapunov analysis, we
obtain explicit LMI conditions which guarantee exponential stability
of the target system (and eventually the original system). Moreover,
we show that the feasibility of the LMIs is guaranteed for small
enough values of the system parameters. Furthermore, differently
from the continuous-time, given any bounded delay, there exist
small enough ¢ such that the LMIs are feasible (i.e. the system is
exponentially stable). Numerical examples demonstrate the efficiency
of the suggested method. A conference version of the paper, confined
to consideration of non-delayed systems and systems with constant
delays, will be presented at ECC 2024 [8].

Notation: R™ denotes the m-dimensional Euclidean space with
vector norm | - |, | - |1 is £' norm, R™*™ is the set of all n x m
real matrices with the induced matrix norm || - ||, O, and I, are the
zero matrix and the identity matrix of order n, respectively. Z is
the set of non-negative integers. The notation P > 0 for P € R™*"
means that P is symmetric and positive definite. The subdiagonal
elements of a symmetric matrix are denoted by *, the superscript T’
denotes matrix transposition, and ® denotes the Kronecker product.
For 0 < P € R™" and x € R™, we write || = 27 Pz. For
two integers p and g with p < ¢, the notation I[p, g refers to the set
{p,p+1,...,q} and we denote |w|},,q = MaXcypp,q] |Ws|.

In the stability analysis below we will use the following:

Lemma 1. (Jensen’s inequality [5, Chapter 6]) For all k € Z the
following inequality holds:

1 k—1
a2

i

k—1

(i1 — 23[R < Z |Zit1 — x| B M
d i=h—d

Lemma 2. (Reciprocally convex combination, [14], [5]) Given R >
0, for any G € R™*™ such that the following inequality

R G
" 90 >
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holds. Then,

3)

. R} , Ya € (0,1).

II. STABILITY ANALYSIS VIA AVERAGING OF DISCRETE-TIME
SYSTEMS

Consider the discrete-time system:

Tptr = [ +eAk)|zw, k € Zy, @)

where z, € R", A(k) : Z+ — R™™"™, & > 0 is a small parameter.
We make the following assumption:

Assumption 1. The matrices A(k), k € Z satisfy
N
A(k) = Aa + Y ai(k) Ay, )
i=1

where Agy is a Hurwitz matrix and {a;(k)}q1, k € Zy are T-
periodic with zero average i.e.

1 k+T—-1
T > a(§)=0, VE>0, Vie{l,2,..,N}. (6
j=k

Remark 1. Every matrix A(k) can be presented as a linear com-
bination in the form (5). Moreover, assuming that the averages of a;
are zero poses no loss of generality, as we can subtract the averages
from the corresponding functions and modify the matrix Aqq.
Remark 2. For simplicity only we consider T-periodic a;. Our
method is applicable to almost periodic a;, which satisfy

1 k+T-1
= a;(j) = Aai(k), sup [|Aai(k)|] < Aq,
T Jz::k (4) (k) kEZP+|| )l

with small enough A,,. The approach is also extensible to ISS of
perturbed time-varying systems.
Using Assumption 1, we present (4) as
N
Trt1 — Tk = €(Aav + Zaz(k)A’)xk

=1

O]

In this paper, we will provide constructive LMI conditions for find-
ing an upper bound on ¢ that guarantees the exponential stability of
(4). We will derive LMIs by using two steps - system transformation
and Lyapunov analysis.

Step I: System Transformation. For each j € {1,2,..., N}, let

k+T—-1
(k+T — i)a, (3).

pi(k): ®

= 7? ‘
i=k

Since a; is a T-periodic function (whence bounded) by Assumption
1, one has p; = O(e). Taking into account (6) and (8), we obtain

pilk+1) —pi(k)=—5 ST (k+1+T —1d)a;(i)
+& ST Nk 4+ T - d)a; (i) = ea;(k).

Introduce the change of variables

®

N
Zk = Tk — ij (k)AJCL‘k (10)
j=1
For simplicity of presentation we will proceed with the case N = 2.
The general case follows the same arguments. Only minor modifica-
tions are required, which are related to the dimensions of the matrices.
This is similar to the continuous case (see Remark 2.7 in [9]).
Clearly, for small enough ¢, the matrix I, —Zle p(k)A; is invert-
ible, whence the transformation (10) is also invertible. A sufficient

2
condition for this is given by the following inequality:
1 2
8y 1= 5leTai,M||Ai|\ <1 an
where a; p := supgey |ai(k)|, ¢ = 1,2. Indeed, we have
2
sup || Y pi(k)Aill < 62 < 1, (12)
keZy =
and by employing a Neumann series and (12), we obtain
5 -1
sup ||| In = p(k)As <6 =(1-6) " (13)
kEZy P
So, under inequality (11), we have
|zk| < 8ulzel, VE € Zy, (14)
lzi] < (14 02)|zk|, VK € Z4. (15)
Using equations (7), (9) and (10), we obtain
2kl — 2k = cAgvzl — 523:1 Z?:l Ainpj(k + l)ai (k):ck (16)
+e X5y pi(k) Awv Ajar — e 3074 AjAaupi(k + 1)aw.
Denoting
A=[A1,As], Ay =[A1A1, A1 Az, Ax Ar, As Ao, an
5" (k) = col{p; (k +m — Dax}iy, m=1,2,
Vp,a(k) = col{p1(k + 1)ai(k)zk, p1(k + 1az(k)xzr, (18)
p2(k + D)ai(k)zy, p2(k + 1)az(k)zr},
the transformation (10) and system (16) can be presented as
2 = a, — AV (k) (19
Zht1 — 2k = €Aavzk + Aav AV () (20)
—eA(I ® Aa) V5 (k) — eA1Yp,a (k).
Note that since p; = O(g), equation (20) is of the form
Zk+1 — 2k = eAavzr + 0(62).
Let
H, = col{hf,l)7 h§,2)}, @
Hpo = col{hfi), hii® h! hi Y,
where hy), hﬁ,f;f), 4,5 = 1,2 are bounds such that
pik) < B, pi(k+ Daj (k) <D, i j=12.  (22)

Since p; and a; are scalar functions, so are the upper bounds in
(22). Since p;j(k) = O(e), one has in (21): |H,|1 = 0(622 and
|H, ol = O(¢?). Then, for any positive diagonal matrices Apm> €
R?*2, m = 1,2, A,., € R*** the following are obtained from (22):

VI (k)T (AS™ @ L) YS™ (k) < [AS™ Hli |z,

23
yg:a(k)(Ap,a ® In)yp,a(kf) S |Ap7aHp7a|1|CCk|2. ( )

The matrices AE,I),Aﬁ,Q) and A, , will be decision variables in the

LMIs derived below (see (33), (34)).

Step II: Lyapunov Analysis. For stability analysis of (20) subject
to (19), we introduce the Lyapunov function

V(k) = |zxlp, P >0 4)
and a decay rate « := 1 — €6, where 0 < 6 < 1/e. Denote
Qole) = AL P4+ PAL + 0P + AL, PA,,. (25)
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Using (20), we obtain

Vk+1) —aV(k) = elzild, + VL (k)AT PALY, o (k)

+&2 VT (1) (AawA)T P(Aaw AV ()

12T (k) (I @ Aa)TATPA(L ® Aay) VP (k)
+2e2] (I + £Aav)" P(AavA) (1)( k)
2627 (I + eAuo) T PA(L> ® Aan) VS (k)
—2e2} (I 4+ €Aav)" PA1Y;.a(k)
222D (k) (Ago AT PA(Lz @ Aao) V2 (k)
262V (k) (AawA)T PALY, 0 (k)

+2¢ y(2) T( )(12 ® Aav)TATP-Alyﬂya(k")'

(26)

Remark 3. In (26) we want to obtain V (k+1)—aV (k) = ¢|zx|5, +
O(g?). The dominating term 6|zk|2Qe is essential for deriving LMIs
that are feasible for small ¢ > 0. In order to achieve the former
relation, o is taken in the form o = 1 — €. Note that system (4) is
slow and its decay rate is small (see also [18]). Hence, the choice
a =1 — €6 is consistent with this observation.

Using (19), we present (26) as a quadratic in x via:

227 eQo(e) AVS" (k)

‘mkEQe(E)
(U(k)

+eVS T (k)AT Qo) AY,

2628 (I + €Aaw)T P(Aaw AV (k) =
=T RATU + o) P A AL (K)
—eV T (k) (Aaw A)P(I + Aan) AV (K)
+2eaf (I + £Aaw) " P(Aa AV (K),

—2e2F (I + Auy)TPA(I2 @ AtV (k) =
—2e2] (I + £Au0) T PA(I2 ® Agn) VP (k)
2V T () AT (T + £ Aa) "PA(I2 @ Aau) VS (),
*262:,6 (I + EAav)TPAlyp,a(k) =
—2exF (I +eAaw)TPALY, o (k)
+2e VT (R)AT (I + e Aao) T PALY,,a(F).

2
|Z’“|EQ9(E) = 7

(28)

(29)

(30)

Let

(k) = col . 5 (k), 5% (k) Yoo (k)

_ \A )i 1|z |2 ymT(k)(A(l) @I, )y(l)(k)

Wo = \A g 1|z |2 y<2>T(k)(A(2)®I )y(z)( k),

= |ApaHpal1 |$k‘ - (k)(Ap,a@)] )Vp,a(k).

Then, (23) implies that W; > 0 for all ¢« = 1,2, 3. Using (23)-(31)
and the S-procedure [5], we arrive at

V(k+1)—aV(k) <V(k+1)—aV(k)+e3° _ Wy

(31

< " (k) ®en(k) < O, e
Provided 5 5
A
P, = [* \I/J <0, (33)
where
¢1 P2 @3
\IJE = * ¢4 E(IQ (2] Aau)T.ATPAl 5
¥ % —(Apa®I,)+eATPA,
=[B2 Bs Ba],
Br= Qo+ 1, NV Hy L + |ApaHpalr I,
ﬂ2 - _QGA + (]n + EAav)TPAaUA; (34)

B = —(In+ €A,w)TP«4(12 ® Aav),
64 = (I + 5Aau PAL
—(A) ® 1) + AT Qo(e) A
+E(AM,A) P(AgwA) — (Ag A)TP(I +€A4)A

~ AT (I, + £Aaw) T P(AanA),

¢o = AT (In + €Aay)" PA(I2 ® Aav)
_5(AavA)TPA(I2 ® Aav)7

¢z = AT(In + EA,W)TPA1 - E(AQU.A)TPAL

¢4 = —(AE;Q) ® In) + 5(12 & Aav)TATPA(IQ ® ACW)

Summarizing, we arrive at:

Theorem 1. Consider system (4) subject to Assumption 1, let
H,,H, . be defined by (22). Given tuning parameters § > 0 and
e* > 0 subject to (11) and Oc* < 1. Let there exist 0 < P € R™*",
and diagonal positive matrices AE,l), AE,Q) € R**? and A, , € R**
such that LMI (33) with notations (25) and (34) holds for € = €*.
Then, system (4) is exponentially stable with a decay rate \/1 — fe
for all € € (0,£], namely, there exists a M > 0 such that for all
€ € (0,€"], the solution of (4) initialized by xo € R" satisfies

,Vk€Zy. (35)

Moreover; if (11) and (33) hold with € = €* and 0 = 0, then (4)
is exponentially stable for all € € (0,e”]. The inequalities (11) and
(33) are always feasible for small enough € and 0.

jok|* < M(1 = 62)* ol

Proof. The fact that given the feasibility of ®. for some 6, £* implies
its feasibility for all € < ¢*, follows from monotonicity of the matrix
®. with respect to ¢ < €* (meaning that as the small parameter
decreases, the eigenvalues of ®. are non-increasing).

Feasibility of . implies that for all

V(k+1)—aV(k) <0=V(k+1) <a"'V(0).
Since Amin(P)|2x)? < V(k) < Amaz(P)|2x|? for all k € Z, we

have A P)
max k+1 2
2k e (36)
onsal” < T 0zl
Inequality (36) together with (14) and (15) yield
A’l’l’l,(lfli
|zkra]? < %52(1+52) (1—e0)" Hxol®.  (37)

Thus, we obtain (35) with M := "““<P 52(1 + 82)?. For the LMI

(33) feasibility guarantees, we choose A(l) A(l) =Azand A\, o =
Aly, where A > 0. We begin by choosing § = 0 (keep in mind
[Hpolt = OE?), |Hpa|t = O(g%)), since Aq,p is Hurwitz matrix,
there is 0 < P € R™ such that 81 < 0 for small enough £ (see
(25), Assumption 1). It can be shown that . < 0 for large enough
A and small enough ¢ (the diagonal elements are linear and negative
in A). Next, we apply Schur complement to ®., whence ®. < 0 iff
p1—+B(A ') "B < 0. Note that —(A\~"W.)~" is bounded as
A — oo (converges to the identity matrix), whereas B is independent
of A. Thus, the feasibility of ®. is guaranteed. O

Numerical Example: Consider a suspended pendulum with sus-
pension point that is subject to vertical vibrations of small amplitude
and high frequency. The discrete-time version of the linearized
model at the upper equilibrium position with a sampling period h
is described as (4) with

(38)

A() = h { cos(kh) 1 }

0.04 — cos®(kh) —0.2 — cos(kh)

The matrix A(k) given by (38) can be presented as (5) with a1 (h) =
cos(kh), az(k) = cos(2kh) and

0 h h 0 0 0
i P T
The corresponding sampling periods is h = g5 and T = 40. We
consider # € {0,0.01} and verify the LMI ®.- < 0 of Theorem
1 to obtain the maximal value €* which guarantees the exponential

stability of system (4) with (38). With some simply calculations, it
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is easily shown that (11) holds for the obtained €* (see Table I). As
seen from Table I, the resulting values of €* are essentially larger
than those obtained in [18].

Method 0=0 0 =0.01

Yang, Zhang & Fridman 0.71-1072 | 0.47-1072

Theorem 1 2.696-10~2 | 1.840-1072
Table 1

MAXIMUM €* PRESERVING THE LMI FEASIBILITY

Remark 4. Note that the significant improvement in the maximal
value of €* is achieved due to the new system presentation (5) and
the novel transformation (10) which yield simpler analysis and reduce
the conservatism on the upper bounds of the system parameters.

III. STABILITY OF THE DISCRETE-TIME SYSTEMS WITH DELAYS

Using the new transformation, which is based on summation of the
rapidly varying coefficients only (and does not include the state inside
of the summation, as was done in the time-delay approach [18]), we
present the first stability conditions for discrete-time systems with
delays. These conditions are essentially more efficient for constant
than for time-varying delays.

We use the simple Lyapunov functionals and the corresponding
analysis following Chapter 6 in [5], which still lead to large delays
in the examples because the system under consideration is slow. Less
conservative results with essentially more complicated LMIs can be
derived by using recent analysis e.g. in [16], [20].

A. Constant Delay

Consider the system

Tht1 = (In +eAo)xy + SAD(k')ikad, keZy, (40)
where d is a positive integer.
Assumption 2. Assume that Ap(k), k € Zy is of the form:
Ng
AD(IC) :Ad+zai(k)Ai, 41
=1

whereas {ai(k)} %, are T-periodic with the zero average (i.e. satisfy
(6)). In addition, we assume that Ao + Aq is a Hurwitz matrix.
As in Section II, we will derive constructive stability conditions
by using two steps - system transformation and Lyapunov analysis.
Step I: System Transformation. We modify the transformation
(10) to account for the delay:

Ng

Zk = Tk — Z pm(k)Ammkfda k > d.

m=1

(42)

We will proceed with the case Ng = 2 for the simplicity of the
presentation. The general case follows the same arguments. Let
Aav = Ao + Ad7

By employing (6), (9), (40) - (42) we obtain

¢k i =x) — Th—a, Vk € Z4.

Zet1 — 2k = EAavzk — €Aalk
+e Zznzl AavAum(k‘)atk,d

—€ Zi:l AmAopm(k + 1)zk_q (43)
—€ 2377,:1 AmAdpm (k + 1)xk72d
—-€ an:l Zf:l AmAzpm (k + l)al(k — d)xk—2d7
Since p;(k) = O(e), equation (43) has the form
Zkt41 — 2k = €Aquzk — €Ak + 0(52), (44)

4
Denote
Va,a(k) = col{a;(k)xr—a}i-1,
L3 (k) = col{ps (k +m — De—a¥ims, m =12,
Voa(k) = col{¥ (k) 5=,
Vp,2a(k) = col{p;(k + 1)zk—24}i—1, (45)
Yp,a,d(k) = col{p1(k + 1)ai(k — d)zK—24,
p1(k +1az(k — d)xk—2q4, p2(k + 1)ai(k — d)xk—24,
p2(k + 1)az(k — d)zk—24},
A =[A1, As], A1 =[A141, A1 42, Az A1, As Ay, (46)
A = [./47 02><27 02><2L Ap,d = [AavA7 _A([Q & AO)}
Then, (43) can be presented as
Zht1 — 2k = €Aavzk — €Ak +eAp.a),.a(k) 7
—eA(I2 ® Ad)Vp2d(k) —eA1YVp a,a(k),
whereas due to (40), (42) we have
Tht1 — Tk = EAqur — €Aali—a + eAVaa(k), (48)
2 = x — AV, a(k). (49)
Let
H, = col(hY, h?) (50)
and H,, H,, be as in (21), where h$”, b, h$"?) satisty,
ai(k) <hS’, pik) <R, Vk €Ly, 1)
P}k +1)a(k —d) < b, Vi, j € {1,2}.
Since p;(k) = O(e), we have |H,|1 = O(e?) and |H, |1 = O(e?).

Then, for any diagonal positive matrices Aq, A, 24 € R**? and
Ap.a, Ap.a € R the following holds:

yg:d(k)(Aa ® In)ya,d(k') < |AaHa|1|13k7d|27
o (K) (N p.a ® 1) Vp.a(k) < [Apa(lo ® Hp)l1|zk—al?,
Yy 2d(k)(Np2d ® In)Vp,2a(k) < [Ap2aHp|1|zk—2al?,
Vpaa(k)Dp.a ® 1n)Vp.a.a(k) < [Ap.aHpalt|rr—2a]*.
The matrices Aq, Apa, Apq and A, 24 will be decision variables in
the LMIs derived below (see (66)).

Step 1I: Lyapunov Analysis. For stability analysis of (47) subject
to (49), let

(52)

Vp(k) = |zk|p, P >0, (53)
Ve ma(k) =300 0" i, Sm >0, (54)
Via(k) =d> 2 30 o Hag — 2|k, R > 0(55)

where m = 1,2 and a := 1 — €6 is the desired decay rate with
0 < 0 < 1/e. Introduce the Lyapunov function

V(k‘) = VP(IC) +e& (Z Vs"“md(k:) + VR,d(k)> , (56)

Here Vs, 4 and Vg 4 compensate xj_q, whereas Vs, 24 compensates
Tr—24 in the stability analysis. Then,

Vp(k+ 1)— aVp(k) = elzi|g, + 268 Al PAaée
+e2Vp.a(k)T AL yPA, aY,.a(k)
+e%Vp.a,a(k) T AT PALY ) a.a(k)

+e*Vp,2a(k) TA(L2 ® Ag)]" P[A(I2 @ Aa)]Vp.24(k)
7262?([ + EAav)TPAdék
+2e2f (I + €Auw) T PA,aY, (k)
—2e2i (I + €Aaw)" PA(I2 ® Aa) Yy 24(k)
—2ezl (I + EAav)TPAlyp,a,d(k)
=262l AT PA, aYpa(k) + 2826 AT PALY, 0,4 (k)
+2e%¢FATPA(I; ® Ag)Yp,2a(k)

(57)
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—26*Y,.a(k)" AL 4PA(I> ® Aa)Y, 2a(k)
=22V, a(k)" AL 4P ALY a.a(k)
+252yp72d(k)T[A(12 ® Ad)]TPAlyp,a,d(k)-

Here Q is defined in (25). Substitute zx = xy — AV, 4(k), we have

2klGy = 2rlGy + 1Vo.a(k) e g4 — 22k Qo AYp,a(k),  (58)
—2e28 (In + €Aav) T P[Aaék — Ap,ap,a(k)
AL ® Ad)Vp,2a(k) + A1 Yp,aa(k)] = (59)
—2¢[xy — AVpa(k))T (I +eAuw) P - [Aaby
7Ap,dyp,d(k) + A(I2 ® Ad)yp,Qd(k) + Alyp,a,d(k)]~
Note that
Vsy,a(k +1) — aVs, a(k) = (1 — a®)|ze 3, (60)
—a’|&l?, + 2a%z] S1&,
Vs, 0a(k +1) — Vs, 2a(k) = |zx|2, — ®¥xk—24[3,. (61)
Let
£: [AavafAd70n><4n7On><2n,Ay 0n><4n]7 (62)
e = col{zk, &k, Vo,a(k), Vo,24(k);, Va,a(k), Yp,a,a(k)}.
By Jensen’s inequality (1), we obtain
Vr,a(k+1) — aVr a(k) < e2d*ni ;LT RLny 4 — % R, (63)
Denote
(1) = diag{() Ap d: p,2ds Aa: Ap,a} ® In,
11 = diag{0,, TV}, Xg = [AaHal1 + [Ap.a(l2 ® Hp)l1, 64)

>\2d = |Ap,2dH ‘1 + ‘Ap,aHp,aha
W = —eni TIni, + eXoa|Th—24|® + eXalzi — &k
Inequality (52) implies that W > 0. Using (52)-(64) and the S-
procedure, we arrive at

Vk+1)—aV(k) < V(k+1) —aV(k)+ W

| 2

< ent (Oc,q + 2d* LT RL) i, (65)
et q(—a?hSs + Nealn)Tr—2a <0,
provided
Oca+ e d*LTRL <0, —a®*Sy 4 Aoal, <0,  (66)
where
B
ee,d = |:ﬂ*1 \Ifs,d:| 7B = [/82 ﬂg /84 Onx2n BS] ’
Wi w2 ws Onxan cATPA
* w4 ws  Oanxon we
U, 4= - + | * *  wr  O2nxon ws s
* * * 02n><2n 02n><4n
* * * * E.ATP.Al
w1 IEAdPAd —« (S1 + R) 4+ Aaln, aa=1-—06¢,
= ATP(I, +€Au)A—cATPA, 4,
wy = eAg PA(Iz ® Aa),
Wy = EA;dPAp,d - AT(In + EAa'U)TPAp,d (67)

+AT QoA — AT JP(I, + cAav) A,

ws = —e AL ;JPA(I2 ® Ag)

+ AT (I, 4+ €Au)TPA(Iy ® Aag),
we = —eAL JPAL + AT (I, + eAaw)T PAs,
wr = e[A(l2 ® Aa)]T PIA(I2 ® Aa)],
ws = e[A(l2 ® Aq)]" PA,

Bi=Qo+ (1 —a’)S1+ S2+ Aaln,

,82 = dSl ( + EAH.’L}) PAd - AClIny
/33 - _QOA+ ( + 5Aav) PAp,d7
B1=—(In+eha)TPA(I2 ® Ag),

ﬁS - _(In + EAav)TPAh

Summarizing, we arrive at:

Theorem 2. Consider system (40) subject to Assumption 2, let
H,,H,, H, ., be defined by (51). Given positive tuning parameters
0, d*, and €* subject to 02 < o and 0¥ < 1. Let there
exist 0 < P,S1,52, R € R"™™, and diagonal positive matrices
Aoy AV A A, 0a € R¥*2 and A, € RY such that LMIs (66)
with notation (25) and (67) holds with ¢ = € and d = d*. Then
system (40) is exponentially stable with a decay rate \/1 — O¢ for all
e € (0,e"] and 0 < d < d*. Namely, there exists M > 0 such that
forall e € (0,e*] and 0 < d < d*, the solution of (40) initialized
at {z;}9__; satisfies

x> < Mzl (1 602), Vk € Zo. (68)

Moreover, if LMIs (66) and 62 < o hold with ¢ = &*, d = d*
and 6 = 0, then (40) is exponentially stable for all € € (0,£*] and
0 < d < d*. Also, given any d, LMI (66) and inequality 52 < o
are always feasible for small enough € and 0.

Proof. The fact that feasibility of (66) and d2 < o with ¢*, d*
implies feasibility for all € < &*, d < d*, and d2 < a® with respect
toe<e”,d<d".

Feasibility of (66), and J2 < a implies that for all d < k € Z,

Vk+1) —aV(k)<0= V(k +1) < o1V (d),
V(d) = IZd|p+Zm 121 - e @ T malE
+d2z——dzs d+1 T 1|x5+17

Also, V() > 0min(P)|2k|?, for any d < k € Z. . Thus, there exists
some M7 > 0 such that

(69)
Ts |%¢

|Zk‘ <M1|a7| do]ai,d§k€Z+. (70)

To conclude the same for the solution x of the system (40), for any
j € Zy, we denote X; = [[?4 j41yg- From (11), (42) and (70),
we find that _

X1 < Mza]d + 62Xj,j S/

where My = M, |m\[27
difference equation

a,0- Set Y1 = X1 and consider the linear
Yji1 = Moo + 655, j € Z.. (71)

By induction, we obtain X; < Y} for_ all j € Z+. Moreover, the
solution of (71) is given by Yj = paa¥ V446771 (X) — pa), j €
Z+, where g = 24250‘ Note that Y}, is decreasing. Let k € Z+ such
that k € I[jd, (j + 1)d] Then
< X < NXy — pa) + pactiT?

e (Xl Hd) —d_k—d
<é, 5 o T i

< (7“‘152“‘” + paa” d) o4 k> das

|k |

where the last inequality follows from &2 < a?. In addition, since zy
is bounded on the interval [0, d], inequality (68) holds for all k € Z..

For the LMI feasibility guarantees for given d, we choose A, =
Npoa =Mlz, Apo = Apa = Mils, R =M1, S1 = Xal,, where
A1 > Mg, S2 = A2l where Ao = 2)X24 (keep in mind that Aoq =
O(g?)). For 0 = 0 (so a = 1), the inequality —a??Sy + Noaln <0
holds, and also ©. 4 is independent of d whereas £2d*£L” RL and
J2 < a? (since 62 = O(g)) are small for enough small . So, it is
sufficient to prove that O 4 < 0. Since Aq, is Hurwitz matrix, there
isa0 < P € R" such that 8; < 0 for small enough €. It is easily seen
that W, 4 < O for large enough A; and small enough € > 0. Next,
we apply Schur complement with respect to O, 4, whence O 4 < 0
iff 1 — 3=B(A;'0.q) ' BT < 0. Note that —(A; "W, 4)"" s
bounded as \; — oo (converges to the identity matrix), whereas B
and [ are independent of A\; implying the feasibility of ©. 4 O
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B. Time-Varying Delays
Consider the system

Tht1 = (In +eAo)xk + SAD(k)xkfdk, keZ, (72)

where dr, < dn, Vk € Z4 and dps is an integer. Assume
that Assumption (2) holds with Ny = 2 (for simplicity of the
presentation).

Differently from the constant delay, for the time-varying delay we
use the same transformation (10) as for the non-delayed case (this
follows the analysis in the continuous-time delayed case [9]).
Remark 5. Note that one can choose a different delayed transform-
ation (for example the one given by (42), where d is changed by
dy). This may require further constraints on delay variation and will
essentially complicate the analysis and the resulting LMIs.

We will derive constructive stability conditions by using two steps
- system transformation and Lyapunov analysis.

Step I: System Transformation. Denote

&k = Th—d;, — Thky Vk = Th—dpy — Th—dy, -

Employing (10) and (72) we obtain the following expression

21 — 2k = EAquzk + eAalk + ngnzl am (k) Am&r
—€ an:l pm(k + 1)AmAav=75k-
—eX3 0 pm(k+1)Am Agke
+e Zm 1 Pm (k)AanAmfk
—e 3 3 pm(k+ Dai(k)AmAizk
—e > Yoy Pk 4 D)as(k) Am Aiky.
O(e), equation (73) has the form
2
Zgt1 — 2k = EAavzy + AL + € Z am(k

m=1

(73)

Since p;(k) =

Differently from the constant case (see equation (44)), for time-
varying delay case, there are additional terms & anzl am (k) Am&r
of order O(¢) (see equation (74)). Let y“)( k), ;2) (k) and YV,,q (k)
be as in (17), (18). Denote

Va(k) = col{a;(k)zk};=1, Za(k) = col{a; (k)& }i=1,

Vp(k) = col{VF (k) Y31, Z,(k) = col{p; (k + )&},

Zp,a(k) = col{p1(k + 1)ai(k)¢x, p1(k + 1)az(k)&k,
p2(k + D)a1(k)&k, p2(k + 1)az(k)Ex}-

Then, equation (72) can be presented as

Zkt1 — 2k = €Aavze + €A Vo (k) — A1 Vo0 (k) + cAalk
+eAZ. (k) —eA(la ® Ag)Z,(k) — e A1 2, q(k),
(75)
whereas due to (10) and (73), we obtain

2 = ak — AV (k), (76)
Tht1 — Tk = EAquxr + AV (K) + €Aalr + e AZ,(k), (T7)

where A, A1, A, A, 4 as defined in (17), (18), (46). Let H,, H,,
H,. be as in (21), (50), where hS” and h$) h(7) satisfy the
inequalities (22) and (51) respectively. Since p;(k) = O(g), we have
|H,|1 = O(¢?) and |H, |1 = O(&?). Then, for any diagonal posit-
ive matrices Ay, ,Az,,Az, € R***and Ay,, Ay, ., Az, , € R™*
the following holds:

Ya (k)" (Ay, ® In)Va(k) < |Ap, Hal1|ax |,

Za(k)" (Az, ® In)Za(k) < [Az, Hal1|k %,

Vo (k) (Ay, @ 1n)Vp(k) < |Ay, (12 @ H)|1|zx|?,

Z,(k)" (Az, ® In)Z,(k) < |Az, Hol1|&x[?,

Vp.al ))T(Aypa 1) Yo.a(k) < |Ay, o Hpal1]zr ],
p,a

k
Zp.a(k)" (Mz, o @ In)Zp.a(k) < Az, ,Hpal1|€:].

The matrices Ay,,Az,, Az, € R**? and Ay, Ay, ., Az, . €
R*** will be decision variables in the LMIs below (see (87), (88)).
Step II: Lyapunov Analysis. For stability analysis of (75) subject
to (76), choose the LK functional

V(k) = Vp(k) +e (stdl\/f (k) + VR,dy (k)) ,Vk > dur, (78)

where Vp(k), Vs.a,, (k) and Vg q4,,(k) are as defined in (53), (63).
Introduce the decay rate o := 1 — &6, where 0 < 6 < 1/e. Then,

Vp(k+1) — aVe(k) = elzla, + Vo (k)T AL PAY, (k)
+e2Vp.a(k)T AT PALY, o (k) + €60 AT P Aaéi
+e2Z, (k)T [A(I2 ® Aa)]" P[A(I2 ® Ad)] Z, (k)

+e2 24 (k)T AT PAZ, (k) + €2 2,0 (k)T AT PAL1Z,,q(K)
262l (I 4+ €Auy) T PAgE) — 262 (I + eA0n) T PALY, o (k)
422 (I + €Aa0)TPALY, + 2e2E (I 4 eAnw) T PAZ,(K)
—2e2{ (I + eAuw) " PA(I> ® Ag) Z, (k)
—2e2{ (I + eAav) " PAL1Z, .0 (k) +28°Y, (k)T AL PA4E
—2e*Y, (k)T AT PALY, o (k) + 2%V, (k)" AT PAZ, (k)
—22Y, (k)T AT PA(I2 ® Aa)Z, (k)
—2e?Y, (k)T AT PALZ, 0 (k) — 262 V.0 (k)T AT PAZ, (k)
+26%Y, . (k)T AT PA(I: ® Ag) 2, (k)
4262V, o (k)T AT PALZ,,0(k) + 262¢F AT PAZ, (K)
—2e2¢FATPA(I, © Ag)Z,(k) — 226 AT PALZ, o ()
—26*Z,(k)TATPA(I2 ® Aq) Z,(k)
—262Z. (k)T ATPA1Z,,0(K) — 26* V.0 (k)T AT PAuks
+26%Z, (k)T [A(l2 ® Ad)]" PALZ, (k)

79

where Qg is given by (25). Substitute 2z = z), — AY,(k), we get

2118y = l2rld, + 1Yo (k) Pir g, 4 — 224 Qo AV, (K),  (80)
2e2] (I + eAa0) " PlAY, — A1V a(k) + Aakr + AZa(k)
—A(l2 ® Aa)Z,(k) — A1 Z, (k)] = (81)

- T
% (a:k - Ayp(k)) (I + eAan)" PlALY, — A1Vpa(k) +
Al + AZ, (k) — A(L2 @ Ag) Z,(k) — A1 Z,,0(K)].

We find further

Vsdy (k+1) — aVs,ay, (k) = (1 — a)[zp[§ — o |&[3
—a™M |y |E — 20T S€, — 20%M 2T Sy — 20%M €] Sy
(82)
Let
AC - [Acnu Ad7 On, 0n><4n7 A7 0nx4n7 On><2n7 A, 0n><4n]7
Mk = COZ{"L‘IW ks Vi, yp(k)v ya(k)a y/?va(k%
Z,(k); Za(K), Zp.0(K)},
By Jensen’s inequality (1) and Park’s inequality (3), we obtain

VR,dp (k+ 1) — aVr,a,, (k) < 52d?v1771€£TR£77k
&) [R G [&]  ®4
Vk * Rl vk’
where 0 < R and G € R™*"™ satisfy LMI (2). Denote

AV = Ay, Hpl1 + Ay, Hal1 + [Ay, . Hp.a
)\(2>

(83)

1,
|Az,Hplr + Az, Hal1 + [Az, , Hpal1,
S _ AW w@ &
H(1> = dzag{O, Oa A‘yp I Aya ’ Ayp,aa A'Zp7 Aza ’ Azp,a} ® In,
So = diag{E{", 5,04, 04n, 020, 0an, 021, Oz, O },

31 = diag{0n, H(l)}, W = E?]E(Eo — Z1)Nk.
Then, (78) implies that W > 0. Using (78)-(85) and the S-procedure,
we arrive at

Vik+1) —aV(k) <V(k+1) —aV(k)+ W

< ankT(GE,dM + 52d?\/[£TRE)7]k <0,

(85)

(86)
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provided (2) and the following inequality hold:

Ocay +E°d3LTRL <0, (87)
where
b1 B
Oc,dy = L \IlfydM:| )
B = [$2, B3, B4, Onx2n, Bs, B7, Bs, Ba),
Bi=Qo+(1—a’)s+5,
[‘32 = 7CldMS + (I + 6AaU)TPAd,
Bs = —a™8, By =—QoA+ (I +cAaw) " PA,,
Bs = —(I +eAu)TPA,
57 = —(I —|— €Aav)TPA([2 ® Ad),
Bs = (I +eAuu)TPA, Bg = —(I 4 eAs)  PA,
V0 Youe Vod
Ve dp = - + * “I’Sz?lM \I/SQM )
* * \Ilsi)iM
wy, = [ e
sdw = |« —a®(S+R)|’
@ _ [ wo Onxon fEAdTP.A1 ]
dn Onx4n  Onx2n Onx4n ’
@ _ [-eATPA(I: ® Aq) cATPA —cATPA;
sdm 0n><2n On><2n O'n><4n :|
w3 O4nx2n w4
eiildM - * 02n><2n 02n><4n 5 (88)
* * eATPA,
Wws We wr
@S;M = O2nx2n O2nx2n 02 x4n y
eATPA(I, ® Ay) —eATPA eATPA,
ws wo e[A(L2 ® Ag)|TP A
egf’;M =|* eA"PA —eATPA, )
* * eATP A,

w) = eATPA; —a®™ (S + R) + 5,
wo = —ATP(I 4+ cAu,)A+cATPA,,
ws =AY PA, — AT(I + cAan)TPA,
~ATP(I 4 eAaw) A+ AT Qo A,
wi = —eATPA; + AT (I + eAaw)T P A,
ws = —e A PA(I; ® Aq)
+./Z(T(I + €Aa1;)TPA([2 ® Ad)7
we = e AL PA— AT(I + eAaw)T PA,
wr = —eATPA; + AT (I + cAaw) T PA,
wg = 6[./4([2 ® Ad)]TP[A([Q ® Ad)],
Wy = 75[./4([2 X Ad)]TP.A

Summarizing, we arrive at:

Theorem 3. Consider the system (72) subject to Assumption 2, let
H,, and H,,H, , be given by (22) and (51), respectively. Given
positive tuning parameters 0, dy;, and € subject to (11) and 6™ <
1. Let there exist 0 < P,S,R € R™*", G € R™*", and positive
diagonal matrices Ay, ,Az,, Az, € R2*Z gnd Ay,, Ay, ., Az, ., €
R*** such that LMIs (2) and (87) with notations (25) and (88) hold
with € = €* and dpyr = dyy. Then system (72) is exponentially stable
with a decay rate \/1 — 0¢ for all € € (0,e*] and 0 < dy, < d}y,
Vk € Zy. Namely, there exists M > 0 such that for all € € (0,€"]
and 0 < di < dm, the solution of (72) initialized by {ZU]'}?:
satisfies

—dn

lze|® < Mlz[f gy, .0(1 — 0€)*, Vk € Zy. (89)

Moreover, if LMIs (2) and (87) hold with € = €%, dy = dy, and
0 = 0, then (72) is exponentially stable for all ¢ € (0,e*] and
0 < dm < dyy. Also, given any dy, the inequalities (2) and (87)
are always feasible for small enough € and 0.

Proof. The fact that feasibility of (87) with 6, £*, dj; implies its
feasibility for all € < €, dar < d}y, follows from monotonicity of
(87) with respect to € < &%, dy < dy-

Feasibility of (87) implies that for all
V(k4+1)—aV(k) <0=V(k+1) <™V (dy), (90)

V(dr) = zay b+ 524 o™ a3
+dum Zi_:lfdM ijdj\jJri adM_S_l ‘xs-!—l - fl:s‘?%

Also, V (k) > Um_m(P)|zk|2, for any dy < k € Z4. Thus, there
exists a constant M > 0 such that

Oon

l2e)® < Mlz[?_g,, 00" "™, dar < k € Zy. (92)
From (14), (15) and (92), we find that
jwk)? < M63|2[tg,, g0, 93)

for all £k > dps. In addition, since xx is bounded on the interval
[0, d], inequality (89) holds for all k € Z.

For the LMI feasibility guarantees for given dns, we choose Ay, =
Az, = Az, = M2, Ay, = Ay,, = Az,, = M4, R = Al
S =el and G = 0, where A > 2max{A{", \{’}. Thus, LMI (2)
is feasible. For § = 0 (so a = 1), O, 4,, is independent of dxs
whereas 2d3, LT RL is small for small enough €. So, it is sufficient
to prove that ©. q4,, < 0. Since Aq. is Hurwitz matrix, there exists
0 < P € R" such that 51 < 0 for small enough e. It is easily seen
that W, 4,, < O for large enough A and small enough € > 0. Next, we
apply Schur complement with respect to ©. 4,,, whence O 4,, < 0
iff B1 — +B(A" "W q,,) BT < 0. Note that —(A™' W 4,,) " is
bounded as A — oo (converges to the identity matrix), whereas B and
B1 are independent of A\ implying the feasibility of O, 4,, < 0. O

Numerical Example: (Stabilization by fast switching) Let

A1, k € [100ne,100(n + 0.4
Ap (k) = { A K € [100ne, 100(n + 0.4)e), (94)
As, k € [100(n + 0.4)e,100(n + 1)e),
and
o[ -1 06 o f02 —04
Ar=10 [—0‘6 0.4} A2 =10 {0.4 1|
028 0 ©3)
— -1 |7 —
Ag=10 [ 0 _0.44},,40_0.

Here, Ap (k) can be presented as (41) with Ao, A1, Az and Ay given
by (95) and

0.6, k € [100ne, 100(n + 0.4)¢),

—0.4, k € [100(n 4 0.4)e,100(n + 1)¢),
—0.6, k € [100ne,100(n + 0.4)¢),

0.4, k € [100(n 4 0.4)e,100(n + 1)¢),

We consider § € {0,0.01}, ¢ € {0.05,0.1}. Note that with some
simple calculations, it is easily shown that (11) holds for ¢ = 0.05
and € = 0.1. We consider systems (40) and (72) with constant and
time-varying delays respectively, and verify the LMIs of Theorems 2
and 3, to obtain the maximal values of d and das which preserve the
stability. The results are given in Table II. Clearly smaller ¢ allows for
larger delays. Moreover, for dys = 153 and 6 = 0, we found that the
LMIs of Theorem 3 are feasible for e* = 0.0075, illustrating that the
LMIs are feasible for large time-varying delays provided ¢ is small
enough. Finally, simulations of solutions for € = 0.05 show stability
for constant delays less or equal to 715 that illustrates conservatism
of the LMI result with maximum delay 153.

al (k) =
(96)
a2 (k) =
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8
Method 0 € [19] J. Zhang and E. Fridman. Lo-gain analysis via time-delay approach to
0.05 | 0.1 periodic averaging with stochastic extension. Automatica, 137:110126,
: : 2022.
0 153 75 [20] X. M. Zhang, Q. L. Han, and X. Ge. A novel approach to H°°
*
Theorem 2 - Constant Delay - d 0.01 135 66 performance analysis of discrete-time networked systems subject to
0 3 1 network-induced delays and malicious packet dropouts. Automatica,
Theorem 3 - Time-varying Delay - d}, 136:110010, 2022.
0.01 19 9

Table 11
MAXIMUM d* AND d}, PRESERVING THE LMI FEASIBILITY.

IV. CONCLUSION

This paper develops a novel constructive approach to averaging for
stability of discrete-time linear delayed systems with rapidly-varying
periodic coefficients. We proposed a novel system presentation and
state transformation that leads to a perturbed averaged system.
Further, by employing a direct Lyapunov method, explicit LMI
conditions for exponential stability were derived. The LMIs provide
upper bounds on the small parameters that preserve exponential
stability of the original system. Moreover, our LMIs are feasible for
any bounded delay provided ¢ is small enough. The results may be
further improvement in the future, and applied to various averaging-
based control problems including extremum seeking.
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