
AS08_Art02_Fridman ARjats.cls October 30, 2024 10:54

Annual Review of Control, Robotics, and
Autonomous Systems

Using Delay for Control
Emilia Fridman1 and Anton Selivanov2
1School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel;
email: emilia@tauex.tau.ac.il
2School of Electrical and Electronic Engineering, University of Sheffield, Sheffield,
United Kingdom; email: a.selivanov@sheffield.ac.uk

Annu. Rev. Control Robot. Auton. Syst. 2025.
8:2.1–2.26

The Annual Review of Control, Robotics, and
Autonomous Systems is online at
control.annualreviews.org

https://doi.org/10.1146/annurev-control-022723-
033031

Copyright © 2025 by the author(s).
All rights reserved

Keywords

time-delay systems, sampled-data control, Lyapunov method, stabilizing
delay, averaging

Abstract

This article reviews two techniques that use delay for control: time-delay
approaches to control problems (which initially may be free of delays) and
the intentional insertion of delays into the feedback. We begin with a now
widely used time-delay approach to sampled-data control. In networked
control systems with communication constraints, this is the only method
that accommodates transmission delays larger than the sampling intervals.
We present a predictor-based design that enlarges the maximum allowable
delay, which is important for practical implementations. We then discuss
methods that use artificial delays via simple Lyapunov functionals that lead
to feasible linearmatrix inequalities for small delays and simple sampled-data
implementations. Finally, we briefly present a new time-delay approach—
this time to averaging. Unlike previous results, this approach provides the
first quantitative bounds on the small parameter, making averaging-based
control (including vibrational and extremum-seeking control) reliable.
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1. INTRODUCTION

What is your reaction when you hear the word delay—positive or negative? In this article, it
will be positive. Time delays are omnipresent. They appear in the states, inputs, and outputs of
dynamical systems. State delays are common in biology, medicine, chemistry, physics, economy,
and finances (1). Input and output delays are inevitable in control systems. Usually small delays
preserve properties of the delay-free system. For example, consider the system

ẋ(t ) = −x(t − h), x(t ) ∈ R, 1.

with a constant delay h > 0. For h = 0, this system is positive (has positive solutions for positive
initial conditions) and exponentially stable. For 0 < h < 1

e , the positivity is preserved (2) [for initial
conditions x(0)> 0, x(s)= 0 for s< 0] as well as the stability. For larger delays, 1e < h < π

2 , solutions
of Equation 1 oscillate (change sign) but exponentially decay to zero. For h > π

2 , Equation 1 has
unbounded and oscillating solutions (see Figure 1).

In some systems, even arbitrarily small delays can lead to instability. This may happen in partial
differential equations (PDEs) (3). For example, consider the 1D wave equation

ztt (ξ , t ) = zξξ (ξ , t ), ξ ∈ (0, 1), z(ξ , t ) ∈ R,
z(0, t ) = 0, zξ (1, t ) = −zt (1, t − h),

2.

with a delay h > 0 in the boundary damping zt(1, t − h). Here, zt, zξ and ztt, zξξ denote first- and
second-order partial derivatives in t and ξ , respectively. If h = 0, then all solutions of Equation 2
are zero for t ≥ 2, but for an arbitrary small h > 0, the system has unbounded solutions. Another
example is neutral-type systems (i.e., systems where the delay enters the highest-order derivative),
where an arbitrary small delay can destabilize the system (see example 2.2 in Reference 4).

However, delays may be stabilizing, and one may artificially insert delays for controller design
(5–12). For example, consider the following double integrator:

ẍ(t ) = u(t ), y(t ) = x(t ), x(t ) ∈ R.

The system is not stabilizable by the nondelayed static output feedback u(t) = K0y(t). Since
u(t ) = K0y(t ) + K1ẏ(t ) stabilizes the system and ẏ(t ) ≈ y(t )−y(t−h)

h , for a small enough h, the system
is stabilizable by the delayed output feedback

u(t ) = K0y(t ) + K1y(t − h), h > 0,
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Figure 1

Solutions of Equation 1 for various values of h.
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and by its sampled-data version, which is easy to implement:

u(t ) = K0y(tk ) + K1y(tk−1 ), t ∈ [tk, tk+1 ), tk+1 − tk = h, k ∈ Z+ = {0, 1, 2 . . .}.
Keeping in mind the abovementioned effects of delays on stability, for time-delay systems (TDSs),
we aim to develop delay-robust designmethods with constructive tools for finding an upper bound
on the delays that preserve the stability and performance [i.e., exponential stability, input-to-state
stability (ISS), and induced L2 gain]. As in systems without delay, an efficient method for the
stability analysis of TDSs is the Lyapunov method. For TDSs, there are two main Lyapunov
methods: the Krasovskii method of Lyapunov functionals (13) and the Razumikhin method of
Lyapunov functions (14). The two Lyapunov methods for linear TDSs can be combined with
linear matrix inequalities (LMIs).

We review two time-delay approaches: a widely used one for sampled-data and networked
control systems (NCSs) (Sections 2 and 3) and a recent one for averaging of systems with highly
oscillating coefficients and averaging-based control (Section 5). Both approaches consist of two
steps: (a) time-delay modeling of the closed-loop system and (b) stability and performance anal-
ysis. We also present simple Lyapunov-based methods for using artificial delay for stabilization
(Section 4). Most of the results are presented for linear systems but may be extended to nonlinear
ones, and we provide references for some of the nonlinear extensions.

2. A TIME-DELAY APPROACH TO SAMPLED-DATA CONTROL

Modern control systems usually employ digital technology for controller implementation, i.e.,
sampled-data control. Consider the linear time-invariant (LTI) system

ẋ(t ) = Ax(t ) + Bu(t ), x(t ) ∈ Rn, u(t ) ∈ Rnu , 3.

where x(t) is the state and u(t) is the control input. The control signal is assumed to be generated
by the zero-order hold (ZOH) function u(t) = ud(tk), tk ≤ t< tk+1, with a sequence of hold times

0 = t0 < t1 < · · · < tk < · · · , lim
k→∞

tk = ∞, 4.

where ud is a discrete-time control signal. The sampling interval can be either constant, with
tk+1 − tk a h, or variable, with tk+1 − tk ≤ h. In the context of NCSs, the sampling interval may
be variable and uncertain due to packet dropouts.

We consider a state-feedback control law u(t) = Kx(tk), tk ≤ t< tk+1. The closed-loop sampled-
data system has the form

ẋ(t ) = Ax(t ) + BKx(tk ), t ∈ [tk, tk+1 ), 5.

and depends on both continuous and discrete time. There are three main approaches to sampled-
data control that have become popular forNCSs (see 4, chapter 7; 15; 16): discrete-time, impulsive
(or hybrid) system, and time-delay approaches.The discrete-time approach loses knowledge about
intersampling behavior, which is especially important for the performance analysis of disturbed
or nonlinear systems, whereas the hybrid and time-delay approaches preserve the intersampling
information.

In the time-delay approach, the sampled-data system in Equation 5 is modeled as a continuous-
time system with a time-varying delay τ (t) = t − tk, t � [tk, tk+1) (17–19):

ẋ(t ) = Ax(t ) + BKx(t − τ (t )), t ≥ 0. 6.

Here, τ (t) is the time-varying (sawtooth) piecewise-linear delay (see Figure 2), which is upper-
bounded by a known bound h (upper bound on the sampling intervals).
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Figure 2

A sawtooth delay, τ (t).

2.1. Lyapunov-Based Stability and Performance Analysis
for Time-Delay Systems

The second step in the time-delay approach to sampled-data control is the stability analysis of the
model with a sawtooth delay, which may be accomplished by either the Lyapunov method or the
input–output approach (see section 4.4 in Reference 4). Robust control of sampled-data systems
was started in Reference 19 via Lyapunov functionals of Reference 20 for systems with fast-varying
delays (without any constraints on the delay derivative). Note that, in slowly varying delays, it is
assumed that τ̇ ≤ d < 1 with some constant d. In this section, we present detailed stability analysis
for systems with fast-varying and sawtooth delays via the simplest Lyapunov functionals, whereas
for advanced results we give references.

Consider the linear TDS

ẋ(t ) = Ax(t ) + A1x(t − τ (t )), t ≥ t0, 7.

where x(t ) ∈ Rn and τ (t) � [0, h] is a bounded fast-varying delay. Here,A and A1 are constant n×
nmatrices.We are interested in simple delay-dependent (i.e., depending on h) stability conditions
under the assumption that, for h = 0, the system in Equation 7 is stable, i.e., the matrix A + A1

is Hurwitz. The first delay-dependent (both Krasovskii- and Razumikhin-based) conditions were
derived using the relation x(t − τ (t )) = x(t ) − ∫ t

t−τ (t ) ẋ(s)ds, which transformed Equation 7 into

ẋ(t ) = [A+ A1]x(t ) − A1

∫ t

t−τ (t )
ẋ(s)ds 8.

via different model transformations (21, 22) [e.g., by substituting the right-hand side of
Equation 7 for ẋ(s), which brings significant conservatism (23, 24)].

We aim to construct a scalar Lyapunov functional candidate that is positive, V ≥ α1|x(t)|2,
α1 > 0, and whose derivative in time along Equation 8 is negative, V̇ ≤ −α2|x(t )|2, α2 > 0. The
latter two conditions guarantee the asymptotic stability of Equation 7 (for the corresponding
Lyapunov–Krasovskii theorems, see, e.g., chapter 3 in Reference 4). We start with the Lyapunov
function VP(x(t)) = xT(t)Px(t), where 0 < P ∈ Rn×n, which corresponds to the nominal system
ẋ(t ) = (A+ A1 )x(t ). Differentiating VP along Equation 8, we have

d
dt
VP (x(t )) = 2xT(t )Pẋ(t ) = 2xT(t )P

[
(A+ A1 )x(t ) − A1

∫ t

t−τ (t )
ẋ(s)ds

]
. 9.
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To guarantee the negativity of V̇, we have to add an additional term to VP that leads (after differen-
tiation and upper-bounding) to a negative quadratic term in

∫ t
t−τ (t ) ẋ(s)ds. Note that using Jensen’s

inequality (25, proposition B.8), we have(∫ t

t−τ (t )
ẋ(s)ds

)T

R
(∫ t

t−τ (t )
ẋ(s)ds

)
≤ τ (t )

∫ t

t−τ (t )
ẋT(s)Rẋ(s)ds ≤ h

∫ t

t−h
ẋT(s)Rẋ(s)ds, 10.

where 0 < R ∈ Rn×n. This motivates the following functional introduced in Reference 20 for fast-
varying delays:

VR(ẋt ) =
∫ 0

−h

∫ t

t+θ

ẋT(s)Rẋ(s)ds dθ =
∫ t

t−h
(h + s − t )ẋT(s)Rẋ(s)ds, 0 < R ∈ Rn×n. 11.

Note that VR depends on ẋt := ẋ(t + θ ), θ ∈ [−h, 0]. Its derivative,

V̇R(ẋt ) = d
dt
VR(ẋt ) = hẋT(t )Rẋ(t ) −

∫ t

t−h
ẋT(s)Rẋ(s)ds

Eq. 10≤ hẋT(t )Rẋ(t ) − 1
h

(∫ t

t−τ (t )
ẋ(s)ds

)T

R
(∫ t

t−τ (t )
ẋ(s)ds

)
,

12.

introduces a negative term that compensates the cross terms with
∫ t
t−τ (t ) ẋ(s)ds. It also adds a (small

for small h) positive term. The functional V = VP + VR can be used to study the stability of
Equation 8. A simple LMI for the negativity of V̇ follows from the summation of Equation 9
with Equation 12 and further application of the Schur complement lemma to hẋT(t )Rẋ(t ) with ẋ
replaced by the right-hand side of Equation 8. This LMI is always feasible for small h.

Another way to derive LMI stability conditions via the same V is to use the descriptor
method (26), which comes from the descriptor model transformation of Equation 8 in the
form of the descriptor system ẋ(t ) = y(t ) and y(t ) = (A+ A1)x(t ) − A1

∫ t
t−τ (t ) y(s)ds. The system in

Equation 7 with a fast-varying delay was analyzed for the first time using the Krasovskii method
in Reference 20 via the descriptor method, where ẋ(t ) is not replaced with the right-hand side of
the differential equation. Instead, introducing the slack variables P2,P3 ∈ Rn×n, one has

V̇P = 2xT(t )Pẋ(t ) = 2xT(t )Pẋ(t )

+ 2
[
xT(t )PT

2 + ẋ(t )T(t )PT
3

] [
−ẋ(t ) + (A+ A1)x(t ) − A1

∫ t

t−τ (t )
ẋ(s)ds

]
13.

since the second line of Equation 13 is zero due to Equation 8. Then,

V̇ = V̇P + V̇R
Eq. 12≤ ηT9η ≤ −α(|x(t )|2 + |ẋ(t )|2 ), α > 0,

with η(t ) = col{x(t ), ẋ(t ), 1
h

∫ t
t−τ

ẋ(s)ds}, if

9 =

PT
2 (A+ A1 ) + (A+ A1 )TP2 P − PT

2 + (A+ A1 )TP3 −hPT
2 A1

∗ −P3 − PT
3 + hR −hPT

3 A1

∗ ∗ −hR

 < 0. 14.

Here, ∗ denotes symmetric terms in the symmetric matrix.
The descriptor method brought the free weighting matrices P2 and P3 into the Lyapunov anal-

ysis with the following benefits: less conservative conditions (even without delay) for uncertain
systems; simple design LMIs for systems with state, input, and output delays by choosing P3 =
εP2 with a tuning scalar parameter ε (see Reference 27 and chapter 5 in Reference 4); unifying
LMIs for the discrete-time and continuous-time systems having almost the same form (chapter 6
in Reference 4); and efficient LMI stability conditions for parabolic PDEs (28–30). Note that
similar slack matrices can be introduced by using Finsler’s lemma (31, 32).
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To reduce the conservatism of the stability conditions via V = VP + VR, the relation between
x(t − τ (t)) and x(t − h) [and not only between x(t − τ (t)) and x(t)] was taken into account in
Reference 33 by adding to V the additional term VS:

V (xt , ẋt ) = xT(t )Px(t ) + hVR(ẋt ) +VS(xt ), VS(xt ) =
∫ t

t−h
xT(s)Sx(s)ds, 0 < S ∈ Rn×n. 15.

Further improvement was achieved in Reference 34, where for upper-bounding of V̇R (given by
the first line of Equation 12) the reciprocally convex inequality was suggested with some matrix
G ∈ Rn×n (after application of Jensen’s inequality):

−h
∫ t

t−h
ẋT(s)Rẋ(s)ds = −h

∫ t−τ (t )

t−h
ẋT(s)Rẋ(s)ds − h

∫ t

t−τ (t )
ẋT(s)Rẋ(s)ds

≤ − h
τ (t )

eT1 Re1 − h
h − τ (t )

eT2 Re2 ≤ −
[
e1
e2

]T[
R G
GT R

][
e1
e2

]
,

[
R G
GT R

]
> 0.

16.

Here, e1 = x(t) − x(t − τ (t)) and e2 = x(t − τ (t)) − x(t − h).
For the exponential stability, to satisfy the condition V̇ + 2αV ≤ 0 with α > 0, one can insert

e−2α(t−s) into the integral terms of V (see details in chapter 4 of Reference 4):

V = xT(t )Px(t ) +
∫ t

t−h
e−2α(t−s)xT(s)Sx(s)ds + h

∫ 0

−h

∫ t

t+θ

e−2α(t−s)ẋT(s)Rẋ(s)ds dθ. 17.

The same V from Equation 17 can be used for the ISS analysis of the perturbed system in
Equation 7.

The above conditions guarantee the stability for a small delay, τ (t) � [0, h]. Many applications
motivate the stability analysis for an interval (or nonsmall) delay τ (t) � [h, h1] with h > 0. Keeping
in mind that Equation 7 can be represented as

ẋ(t ) = Ax(t ) + A1x(t − h) − A1

∫ t−h

t−τ (t )
ẋ(s)ds,

one can analyze the stability of Equation 7 via the Lyapunov functionals of the form V (xt ,ẋt ) =
Vn(xt , ẋt ) +V1(xt ,ẋt ) (35), where Vn is the nominal functional for the exponentially stable nominal
system with constant delay ẋ(t ) = Ax(t ) + A1x(t − h), and where

V1 =
∫ t−h

t−h1

xT(s)S1x(s)ds + (h1 − h)
∫ −h

−h1

∫ t

t+θ

ẋT(s)R1ẋ(s)ds dθ , S1 > 0, R1 > 0. 18.

For the recent improvements of the stability conditions for systems with fast-varying delay
by using augmented Lyapunov functionals, Bessel–Legendre inequalities, and novel reciprocally
convex inequalities, we refer readers to References 36–38 and the references therein. The im-
proved conditions are usually formulated in terms of higher-order LMIs. Note that, in contrast to
constant delays, where Lyapunov functionals may depend only on xt, the existing Lyapunov func-
tionals for fast-varying delays depend on ẋt . The latter may be challenging for stochastic (where
ẋ is not well defined) or PDE systems. In the stochastic case, the deterministic part of ẋt may be
employed together with additional terms for Lyapunov functional constructions (39).

2.2. Time-Dependent Lyapunov Functionals for Systems with Sawtooth Delays

Consider Equation 7 with the sawtooth delay τ (t) = t − tk, t � [tk, tk+1), tk+1 − tk ≤ h. Before
Reference 40 was published, the conventional time-independent Lyapunov functionals V (xt , ẋt )
for systems with fast-varying delays had been applied to sampled-data systems (19). In
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Reference 40, the sawtooth evolution of the delays was taken into account via the introduction
of time-dependent Lyapunov functionals [inspired by the impulsive system approach to sampled-
data control (41)]. Instead of theVR(ẋt ) given by Equation 11, the following term was suggested:

VR(t, ẋt ) = (tk+1 − t )
∫ t

tk

ẋT(s)Rẋ(s)ds, t ∈ [tk, tk+1 ), R > 0, 19.

which continuously depends on time and after the differentiation

d

dt

VR(t, ẋt ) = −
∫ t

tk

ẋT(s)Rẋ(s)ds + (tk+1 − t )ẋT(t )Rẋ(t )

gives the same negative term as in Equation 12 but a smaller positive term. The time-dependent
V = xT(t )Px(t ) +VR(t, ẋt ) via the descriptor method and Jensen’s inequality leads to an LMI,
which is affine in tk+1 − t and t − tk, whose feasibility is guaranteed if the resulting LMIs in two
vertices (t → tk and t → tk+1) hold:[

811 P − PT
2 + (A+ A1 )TP3

∗ −P3 − PT
3 + hR

]
< 0,

811 P − PT
2 + (A+ A1 )TP3 −hPT

2 A1

∗ −P3 − PT
3 −hPT

3 A1

∗ ∗ −hR

 < 0, 20.

where 811 = PT
2 (A+ A1 ) + (A+ A1 )TP2. It can be seen that the LMIs in Equation 20 are less

restrictive than the LMI in Equation 14 (leading to an h in Example 1 below that is twice as large).
Reference 42 suggested a different time-dependent (but discontinuous in time) Lyapunov

functional that is based on the vector extension of Wirtinger’s inequality:∫ b

a
zT(ξ )Wz(ξ )dξ ≤ 4(b− a)2

π2

∫ b

a
żT(ξ )W ż(ξ )dξ , W > 0, 21.

which holds for absolutely continuous z : (a, b) → Rn with ż ∈ L2(a, b) and z(a) = 0. The
Lyapunov functional V = xT(t )Px(t ) +VW (t, xt , ẋt ) (P,W > 0) with nonnegative (due to
Wirtinger’s inequality) term

VW (t, xt , ẋt ) = h2
∫ t

tk

ẋT(s)W ẋ(s)ds − π2

4

∫ t

tk

[x(s) − x(tk )]TW [x(s) − x(tk )]ds,

W > 0, tk ≤ t < tk+1, k ∈ Z+,
22.

is discontinuous in time at the points t= tk but does not grow at these points.Thus,V̇ ≤ −α2|x(t )|2
with some α2 > 0 guarantees the stability of Equation 7 with the sawtooth delay. Since

d

dt

VW = h2ẋT(t )W ẋ(t ) − π2

4
[x(tk ) − x(t )]TW [x(tk ) − x(t )],

we directly arrive at the following stability condition (which recovers the result of Reference 43
derived via the small-gain theorem):P(A+ A1 ) + (A+ A1 )TP PA1 h(A+ A1 )TW

∗ − π2

4 W hAT
1W

∗ ∗ −W

 < 0, P > 0, W > 0. 23.

The Wirtinger-based LMI in Equation 23 is a single LMI with fewer decision variables than
Equation 20. In contrast to the Lyapunov functional in Equation 19 (and its extensions, e.g.,
in References 40 and 44), the Wirtinger-based functionals can be efficiently applied to interval
sawtooth delays (42). For the exponential or ISS stability, VW can be modified as follows (45):

VW = h2e2αh
∫ t

tk

e2α(s−t )ẋT(s)W ẋ(s)ds − π2

4

∫ t

tk

e2α(s−t )[x(s)−x(tk )]TW [x(s) − x(tk )]ds,

www.annualreviews.org • Using Delay for Control 2.7
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where α > 0 and VW ≥ 0 due to the extended Wirtinger’s inequality (see lemma 4 in
Reference 45).

The time-dependent Lyapunov functional constructions discussed above have become efficient
for various sampled-data and networked-based control problems, including NCSs with network-
induced delays (46) and NCSs with scheduling protocols (47–49).

Example 1. Consider the scalar system

ẋ(t ) = −x(t − τ (t )), 24.

which is asymptotically stable for a constant delay τ < π/2, for all fast-varying τ (t) < 1.5,
and for sawtooth τ (t ) = t − tk < 2, t ∈ [tk, tk+1 ), k ∈ Z+, and unstable otherwise. The LMI in
Equation 14, the conditions in Reference 34, and the conditions in Reference 38 guarantee
asymptotic stability for all fast-varying delays with upper bounds of 0.99, 1.33, and 1.40, re-
spectively. By the impulsive system approach (41), the Wirtinger-based LMI in Equation 23,
and the LMIs in Equation 20, the upper bounds on the variable samplings are 1.28, 1.57, and
1.99, respectively (the latter two bounds cannot be achieved by treating the sawtooth delays as
fast-varying, where the upper bound is less than 1.5).

3. A TIME-DELAY APPROACH TO NETWORKED CONTROL SYSTEMS

NCSs are systems with spatially distributed sensors, actuators, and controller nodes that exchange
data via a communication network. Among the benefits of NCSs are their ease of installation
and maintenance, flexibility, low cost, and long-distance estimation and control. However, for the
design of NCSs, the following undesirable perturbations should be taken into account: variable
sampling or transmission intervals, variable communication delays, packet dropouts caused by
the unreliability of the network, quantization errors, and communication constraints (where
only one sensor or actuator node is allowed to transmit its packet per transmission, and where
scheduling protocols are needed to orchestrate the transmission order of the nodes) (50).

Consider the static output-feedback control of anNCS shown in Figure 3with the linear plant
defined by Equation 3 and the output y = Cx ∈ Rny . Here, we have two networks (from sensor to
controller and from controller to actuator) with separate sensor and actuator nodes. The sampler
on the sensor side is time driven, whereas the controller and the ZOH are event driven (in the
sense that the controller and the ZOH update their outputs as soon as they receive a new sample).

u(t) y(t)

y(sk)

q(y(sk))

u(tk) = Kq(y(tk – ηk))

Communication network

ZOH

Delay

Controller

Plant

Delay

Quantizer

Sampler

Figure 3

A networked control system with static output feedback. Abbreviation: ZOH, zero-order hold.

2.8 Fridman • Selivanov



AS08_Art02_Fridman ARjats.cls October 30, 2024 10:54

We assume that the output y(sk) is available at discrete sampling instants

0 = s0 < s1 < · · · < sk < · · · , lim
k→∞

sk = ∞, 25.

and its quantized values, q(y(sk)), are transmitted via the networks. The quantizers are piecewise-
constant functions q: Rny → D, where D is a countable or finite subset of Rny . There are several
types of quantizers, e.g., uniform (51) and logarithmic (52). Consider, e.g., a uniform quantizer,
where the quantization error is upper-bounded by a known constant 1 > 0 : |q(z) − z| ≤ 1 ∀z ∈
Rny [for the case where |q(z) − z| ≤ 1 holds for |z| ≤ M and |q(z)| > M − 1 for |z| > M (here,
M > 0 is the quantization range), see References 53 and 54].

We take into account data packet dropouts by allowing the sampling to be nonuniform. In our
formulation, y(sk) corresponds to the measurements that are not lost. Denote by tk the updating
instant time of the ZOH, and suppose that the updating signal at the instant tk has experienced a
signal transmission delay ηk. As in References 46 and 55, we allow the delays ηk to be larger than
the sampling intervals sk+1 − sk, provided that the sequence of input update times tk remain strictly
increasing. This means that if an old sample gets to the destination after the most recent one, it
should be dropped.

The static output-feedback controller implemented via ZOH has the form

u(t ) = Kq(y(tk − ηk )), tk ≤ t < tk+1, k = 0, 1, 2, . . . , 26.

with tk+1 being the next updating instant time of the ZOH after tk.
To extend the time-delay approach from sampled-data control to NCS, define

τ (t ) = t − tk + ηk, tk ≤ t < tk+1. 27.

Assume that

tk+1 − tk + ηk ≤ τM, k ∈ Z+, 28.

where τM denotes the maximum time span between the time sk = tk − ηk at which the state is
sampled and the time tk+1 at which the next update arrives at the ZOH. Suppose that the network-
induced delay is lower-bounded: ηk ≥ ηm, where ηm ≥ 0 is a known bound. We have a bounded
piecewise-linear delay

ηm ≤ τ (t ) = t − tk + ηk ≤ tk+1 − tk + ηk ≤ τM ∀k ∈ Z+

with τ̇ (t ) = 1 for t ̸= tk. Let MAD (maximum allowable delay) be a known upper bound on the
network-induced delay ηk and MATI be the maximum allowable transmission interval, meaning
that successive sensor measurements are separated by at most MATI seconds (56). Assume that
δ ∈ Z+ is a bound on the maximum number of successive dropouts. Then, τM = (1 + δ)MATI +
MAD.

We obtain the following time-delay model of the closed-loop system:

ẋ(t ) = Ax(t ) + BKCx(t − τ (t )) + BKw(t ), t ≥ 0, 29.

where w(t) = q(y(sk)) − y(sk) is the quantization error and |w(t)| ≤ 1. ISS analysis of the system
in Equation 29 with a time-varying delay τ (t) � [ηm, τM] can be provided by deriving conditions
for V̇ + 2αV − γ 2|w|2 ≤ 0 ∀w (with some constants α > 0 and γ 2) along Equation 29 via an
appropriate Lyapunov functional V (see the sidebar titled Networked Control Systems Under
Dynamic Quantizers).
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NETWORKED CONTROL SYSTEMS UNDER DYNAMIC QUANTIZERS

The time-delay approach can be efficiently applied to NCSs under dynamic quantizers with the zoom strategy
introduced in Reference 51, which is composed of zooming out (the range of quantizer is increased to guarantee
that output can be adequatelymeasured) and zooming in (the quantization error is decreased to drive the states to the
origin). To derive constructive conditions for finding the zooming times, Lyapunov-based bounds on the solutions
of the delayed closed-loop system and additional bounds on the solutions of the open-loop system ẋ(t ) = Ax(t )
for t ≥ 0 such that t − τ (t) < 0 are employed in Reference 54. For the time-delay approach to NCSs under the
logarithmic quantizer, where the quantization error is presented as a sector-bounded nonlinearity, we direct readers
to Reference 57.

3.1. Networked Control Systems Under Scheduling Protocols

The communication constraints impose that, for each transmission, only one node can access
the network and send its information. Hence, communication along the data channel is orches-
trated by a scheduling rule called a protocol. There are three main classes of network protocols:
(a) static protocols, including the round-robin protocol, where the signals from nodes are trans-
mitted periodically one after another (the order is decided in advance) (50, 58, 59); (b) dynamic
protocols, which include the well-known try-once-discard (TOD) protocol (47, 49, 50, 58, 60),
where the node that has the largest deviation of the current value of the signal from the latest
transmitted one is granted access to the network; and (c) the stochastic protocol, which determines
the transmitted node through a Bernoulli or a Markov chain process with a known probability for
collisions (48, 61).

Three main approaches have been applied to NCSs in the presence of scheduling protocols:
the hybrid approach (50, 58), the discrete-time approach (60), and the time-delay approach (47–
49, 59). So far, only the time-delay approach has allowed for large communication delays (larger
than the sampling intervals) in the presence of scheduling protocols.

Consider the LTI system in Equation 3 with N measurements yi = Cix, i = 1, . . . , N, in the
presence of scheduling protocols from sensors to controller, as shown in Figure 4 under the static
output-feedback controller with a gain K= [K1, . . . ,KN] such that A+ ∑N

i=1 BKiCi is Hurwitz. For

u(t)
y1(t)

yN(t)

ŷN(sk)

ŷ1(sk)

ZOH

Controller

Plant

Communication network

Scheduling protocol

Figure 4

Scheduling from sensors to controller in a networked control system. Abbreviation: ZOH, zero-order hold.
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the round-robin protocol, under the assumptions on the sampling instants and network-induced
delays as in the previous section (without quantization and packet dropouts), the simplest closed-
loop model is a model with multiple delays:

ẋ(t ) = Ax(t ) +
N∑
i=1

BKiCix(t − τi(t )), t ≥ tN−1, 30.

where ηm ≤ τ i(t) ≤ N · MATI + MAD (49). The stability of the latter system can be studied by
using Lyapunov functionals for interval delays. Reference 59 presented a more accurate (and com-
plicated) switched-system model of the closed-loop system with ordered delays that may improve
the results (but increase the complexity of the conditions). Under the TOD and stochastic proto-
cols, the time-delay approach leads to the impulsive model with delays in the continuous dynamics
and in the reset equations, where discontinuous Lyapunov functionals are useful (for the extension
of the time-delay approach under scheduling protocols to stochastic systems, see Reference 62).
In the numerical examples via the time-delay approach, the round-robin protocol usually leads to
a larger MATI and MAD (and essentially improves the results via other approaches).

Reference 49 extended the time-delay approach to decentralized NCSs with multiple inde-
pendent local communication networks under the round-robin or TOD protocol of coupled
systems:

ẋ j = A jx j +
∑
l ̸= j
Fl jxl + B ju j , y j = C jx j , j = 1, . . . ,M, 31.

where x j ∈ Rn j , y j ∈ Rp j , and Fij is a coupling matrix. The network-based static output feedback
uj = Kjyj was considered. Efficient (for weak coupling with comparatively small ∥Flj∥) stability
conditions for the coupled systemwere derived by using Lyapunov functionalsVj with nonintegral
parts xTj Pjx j , Pj > 0 (appropriate for each closed-loop j subsystem), by verifying the conditions

V̇j (t ) + 2αVj (t ) ≤ 2ε
M − 1

∑
l ̸= j

xTl (t )Plxl (t ) ∀ j = 1, . . . ,M 32.

for some α > ε > 0. Indeed, the latter inequality guarantees the exponential stability of the en-
tire system since its Lyapunov functional V = ∑M

j=1Vj satisfies V̇ + 2(α − ε)V ≤ 0. For detailed
reviews on the time-delay approach to NCSs, we direct readers to References 16 and 63.

3.2. Compensation of Large Constant Parts of Delays in Networked Control
Systems Using Predictors

To further enlarge communication (and additional input/output) delays that preserve NCS per-
formance, predictors can be used for compensation of large and known constant parts of delays.
There are three main predictor methods: (a) classical predictors, which extended Smith’s predic-
tor to unstable systems using the state-space representation (64); (b) PDE-based predictors (65);
and (c) sequential subpredictors (66). Classical predictors via a reduction approach (67) and sub-
predictors can efficiently compensate known constant parts of fast-varying nonsmall delays that
appear in NCSs.We briefly present the two latter methods below.Note that it is difficult to apply
the PDE-based predictor in the presence of (additional to constant) fast-varying delay (68), but
the PDE predictor has been extended to unknown constant delays (69, 70).

3.2.1. Classical predictors and the reduction approach. Consider the LTI system

ẋ(t ) = Ax(t ) + Bu(t − h), t ≥ 0, x : [0,∞) → Rn, u : [−h,∞) → Rm, 33.

with a constant input delay h > 0 and u(t) = 0 for t < 0. If there is K ∈ Rm×n rendering A + BK
Hurwitz, the control u(t − h) = Kx(t) would exponentially stabilize Equation 33. The problem is
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that u(t) = Kx(t+ h) depends on the future state value, which cannot be measured. The idea of the
classical predictor is to predict x(t + h) by using a variation-of-constants formula for Equation 33
on [t, t + h):

x(t + h)= eAhx(t ) +
∫ t+h

t
eA(t+h−s)Bu(s − h)ds ⇒

u(t )=K
[
eAhx(t ) +

∫ t

t−h
eA(t−s)Bu(s)dξ

]
, t ≥ 0.

The latter is a causal controller depending on the past values of u(s) with s � [t − h, t].
For the control of systems with uncertain input delay (as appears in NCSs),

ẋ(t ) = Ax(t ) + Bu(t − h − η(t )), t ≥ 0, 0 ≤ η(t ) ≤ µ < h, 34.

where h is known, the model reduction approach is efficient (67, 71). In this approach, the change
of variables

z(t ) = eAhx(t ) +
∫ t

t−h
eA(t−s)Bu(s)ds

reduces Equation 34 with u(t) = Kz(t) to [nondelayed for η(t) = 0] the system

ż(t ) = (A+ BK )z(t ) + eAhBK [z(t − h − η(t )) − z(t − h)].

The stability of this system can be analyzed using the Lyapunov functional V = xT(t)Px(t) + V1,
P > 0, where V1 is defined by Equation 18 with h1 = h + µ (68, 72).

For the output-feedback control of Equation 33 with y(t) = Cx(t), the Luenberger observer

˙̂x(t ) = Ax̂(t ) − LC(x(t ) − x̂(t )) + Bu(t − h) 35.

is employed with L such that A + LC is Hurwitz. The observer-based predictor has the form

u(t ) = Kẑ(t ), ẑ(t ) = eAhx̂(t ) +
∫ t

t−h
eA(t−s)Bu(s)ds. 36.

The stability of the resulting closed-loop system can be analyzed by separating the stability anal-
ysis of the estimation error e(t ) = x(t ) − x̂(t ), which satisfies ė(t ) = (A+ LC)e(t ), and the stability
analysis of

˙̂z(t ) = Aẑ(t ) + Bu(t ) − eAhLCe(t ) = (A+ BK )ẑ(t ) − eAhLCe(t ). 37.

Note that, if the input and output constant delays are hu ≥ 0 and hy > 0, respectively, then the
output delay can be moved to the input, with the resulting input delay h = hu + hy.

For the output-feedback control of Equation 34 with a known h and y(t) = Cx(t), the same
predictor given by Equations 35 and 36 can be used, leading to the coupled closed-loop system in
Equation 37 and

ė(t ) = (A+ LC)e(t ) + BK (ẑ(t − h − η(t )) − ẑ(t − h)).

The stability conditions for the latter system can be derived by using an appropriate Lyapunov
functional. In the presence of two networks (from sensors to controllers and controllers to actu-
ators), it can be assumed that the resulting measurement delay τ y(t) is known (the measurements
are sent together with the time stamps). Then the observer in Equation 35 can be applied with
the innovation term LC

(
x(t − τy(t )) − x̂(t − τy(t ))

)
[instead of LC (x(t ) − x̂(t ))] together with the

predictor in Equation 36. For classical predictors in application to NCSs, we direct readers to
References 45 and 73.
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3.2.2. Sequential subpredictors. Consider Equation 33 with y(t) = Cx(t). The main idea of the
subpredictor feedback is to construct an observer (subpredictor) x̂(t ) of the future state x(t + h)
(66):

˙̂x(t ) = Ax̂(t ) + Bu(t ) + L[Cx̂(t − h) − y(t )]

with the feedback u(t ) = Kx̂(t ). Here, L and K are chosen to make A + LC and A + BKHurwitz.
The prediction error e(t ) = x̂(t − h) − x(t ) is governed by

ė(t ) = Ae(t ) + LCe(t − h).

If the value of h is too large and leads to instability, the large delay h is divided into small fractions
h/M,M ∈ N, with sequential subpredictors (66, 74)

x̂1(t ) ≈ x(t + h), x̂2(t ) ≈ x
(
t + M − 1

M
h
)
, . . . , x̂M (t ) ≈ x

(
t + h

M

)
,

governed by

˙̂x1(t ) = Ax̂1(t ) + LC
(
x̂1

(
t − h

M

) − x̂2(t )
) + Bu(t ),

˙̂x2(t ) = Ax̂2(t ) + LC
(
x̂2

(
t − h

M

) − x̂3(t )
) + Bu

(
t − h

M

)
,

...
˙̂xM (t ) = Ax̂M (t ) + L

(
Cx̂M

(
t − h

M

) − y(t )
) + Bu

(
t − M−1

M h
)
.

38.

The errors ek(t ) = x̂k(t − h/M ) − x̂k+1(t ) (k= 1, . . . ,M− 1), eM (t ) = x̂M (t − h/M ) − x(t ), satisfy

ėk(t ) = Aek(t ) + LCek(t − h/M ) − LCek+1(t ), k = 1, . . . ,M − 1,
ėM (t ) = AeM (t ) + LCeM (t − h/M ).

39.

The system described by Equation 39 is stable provided its last equation is stable (i.e.,M is large
enough). The feedback u(t ) = Kx̂1(t ) stabilizes Equation 33 since the closed-loop system given
by Equation 39 and

˙̂x1(t ) = (A+ BK )x̂1(t ) + LCe1(t ) 40.

with ek → 0 (k = 1, . . . ,M) is stable.
If h is known and η(t) is unknown in Equation 34, then the subpredictors have the same form

as Equation 38 with the control law u(t ) = Kx̂1(t ). In this case, Equations 39 and 40 cannot be
separated, because the last equation of Equation 39 is replaced with

ėM (t ) = AeM (t ) + LCeM
(
t − h

M

)
+ BK (x̂1(t − h) − x̂1(t − h − η(t ))). 41.

Here, the stability analysis of the coupled system (modified Equations 39 and 40) should be pro-
vided. (For more on comparisons of predictors and subpredictors, see the sidebar titled Classical
Predictors Versus Subpredictors.)

CLASSICAL PREDICTORS VERSUS SUBPREDICTORS

Subpredictors can be easily applied to systems with norm-bounded uncertainties and nonlinearities. For the com-
parison of the classical predictor and subpredictors in application to decentralized control of large-scale systems
with independent networks, we direct readers to Reference 75, where subpredictors lead to a larger constant part
of delay and delay uncertainty in the examples. Subpredictors are also efficient in the presence of a round-robin
protocol from sensors to controllers (75).

www.annualreviews.org • Using Delay for Control 2.13



AS08_Art02_Fridman ARjats.cls October 30, 2024 10:54

3.3. A Time-Delay Approach to Event-Triggered Control

The event-triggering mechanism (ETM) is used to reduce the number of signals to be transmitted
through a communication network (76, 77). When the time-delay approach with an appropriate
Lyapunov functional is applicable to NCSs, the ETM may further reduce the number of sent
signals, though the benefits are usually demonstrated only by numerical simulations (the workload
reduction has been analytically proven only for stochastic systems, e.g., in Reference 78). Two
main time-delay approaches to event-triggered control have been suggested: the discrete-time
ETM (which includes periodic as a particular case) (79, 80) and the continuous-time ETM with
a dwell time (the switched-system approach) (81).

Consider an LTI system with the output y(t ) ∈ Rny being transmitted through a communica-
tion channel at the sampling instants tk, k ∈ Z+. Then, the event-triggering condition is checked
periodically at the discrete times tk + ih with i = 1, 2, . . . (79, 80) and

tk+1 = min{tk + ih | |√�(y(tk + ih) − y(tk ))|2 > σ |√�y(tk + ih)|2}, 42.

whereas an ETM with a dwell time h > 0 is checked continuously (81):

tk+1 = min{t ≥ tk+ h | |
√

�(y(t ) − y(tk ))|2 ≥ σ |
√

�y(t )|2}. 43.

Here, t0 = 0, σ > 0, and 0 < � ∈ Rny×ny . The ETMs in Equations 42 and 43 guarantee that
the interevent time is at least h, which rules out the Zeno behavior. The ETM in Equation 43
can be viewed as a switching between the time-triggered sampling tk with tk+1 − tk ≤ h and the
continuous ETM, bringing advantages in the stability analysis compared with the discrete-time
ETM (81). Both ETMs based on the time-delay approach to NCSs can easily treat additional
network-induced delays. A switched-system approach with continuous-time ETM verification ap-
peared to be natural for observer-based control, where the control law is computed continuously
in time, but the ETM is used in the network from the controller to the actuator (82). For a review
on time-delay approach to event-triggered control, we direct readers to Reference 16.

3.4. Network-Based Control of Partial Differential Equations
and Multiagent Deployment

Network-based long-distance control of chemical reactors or areas with air pollution that can
be modeled by diffusion PDEs (83, 84) is potentially of great interest. A time-delay approach
to sampled-data and network-based control of parabolic PDEs has been suggested for dis-
tributed (in the spatial domain) or boundary control of parabolic PDEs via two methods: spatial
decomposition (29, 85) and modal decomposition (82, 86–88). In the modal decomposition (ap-
plicable to distributed and boundary control) (89), the controller is constructed on the basis of a
finite-dimensional system that captures the dominant dynamics of the infinite-dimensional one.
In the spatial decomposition (applicable to distributed control), the spatial domain is divided
into n subdomains with n sensors and actuators located in each subdomain. Finite-dimensional
output-feedback controllers [static via spatial decomposition (29) and observer based via modal
decomposition (87)] appear to be robust with respect to delays. Observer-based controllers are
efficient for delay compensation (88). Delayed (boundary or in-domain) measurements can be
analyzed by combining the Lyapunov functionals and Halanay’s inequality (29, 90, 91).

The ETMs in Equations 42 and 43 for the heat PDE were presented in References 92 and 82,
respectively. Network-based H∞ filtering of the N-dimensional heat PDE in the presence of the
round-robin protocol was studied in Reference 85. Sampled-data control via time-delay approach
was suggested for the heat (93), Kuramoto–Sivashinsky (94), damped wave, and beam (95, 96)
equations (see the sidebar titled Partial Differential Equation–Based Deployment).

2.14 Fridman • Selivanov



AS08_Art02_Fridman ARjats.cls October 30, 2024 10:54

PARTIAL DIFFERENTIAL EQUATION–BASED DEPLOYMENT

Deployment of a multiagent system, where a group of agents rearrange their positions into a target spatial configu-
ration in order to achieve a common goal, has attracted the attention of many researchers (97). When the number
of agents is large, a methodology based on PDEs becomes efficient (98, 99). A PDE-based approach to multiple
agents has the advantage of inherent scalability, bringing new, efficient, PDE-inspired decentralized control laws.
In the case of measurements of the leaders’ absolute positions, the majority of PDE-based results employ the PDE
observer, which may be difficult to implement. References 95 and 100 suggested a simple static output-feedback
controller where the leaders’ absolute positions were transmitted to other agents by using a communication net-
work. In References 101 and 102, leaders employed network-based boundary control and avoided communicating
with other agents (which may be expensive and not secure).

4. USING ARTIFICIAL DELAYS FOR CONTROL

It is well known that time delay is, inmany cases, a source of instability.However, for some systems,
the presence of delay can have a stabilizing effect (5–7, 103). Thus, some classes of systems (e.g.,
chains of integrators, oscillators, or inverted pendulums) that cannot be stabilized by memoryless
static output feedback can be stabilized by using static output feedback with delays (8, 9, 104, 105).
The idea of feedback design in this case is usually based on the employment of a stabilizing feed-
back that depends on the output derivatives (which can hardly be measured directly) and further
approximation of the output derivatives by finite differences. Similarly, the output derivative in
a proportional–integral–derivative (PID) controller can be replaced by its Euler approximation
(10).

It is clear that the methods that assume the stability of the delay-free system are not applica-
ble to the delay-induced stability, where delay has a stabilizing effect. One way to obtain stability
conditions for stabilizing delays is to use frequency domain analysis, which gives necessary and
sufficient conditions in the case of LTI systems (6, 106). This approach, however, is challenging to
use with high-order systems,multiple delays, or nonlinear dynamics.Alternatively, one can use dis-
cretized Lyapunov functionals (25) or augmented Lyapunov functionals (107). These approaches
lead to higher-order LMIs without feasibility guarantees. Static output-feedback controllers with
stabilizing artificial delays are attractive due to their simplicity in implementation, and the first
simple and efficient LMI conditions with feasibility guarantees for the design and robustness anal-
ysis of such controllers were suggested in References 11 and 12. Here, we present two approaches
that lead to simple LMIs guaranteeing delay-induced stability with feasibility guarantees.

4.1. Lyapunov–Krasovskii Analysis via Neutral-Type Transformation

Consider the following second-order system:

ÿ(t ) = A0y(t ) + A1ẏ(t ) + Bu(t ), y ∈ Rn, u ∈ Rm. 44.

Such systems are ubiquitous in mechanical engineering and describe, e.g., an inverted pendulum
on a cart. This system can be rewritten as

ẋ(t ) =
[
0 In
A0 A1

]
x(t ) +

[
0
B

]
u(t ), x(t ) =

[
x0(t )
x1(t )

]
=

[
y(t )
ẏ(t )

]
. 45.

Assume that Equation 44 is stabilizable, i.e., there exists K̄ ∈ Rm×n such that the state feedback

u♡(t ) = K̄x(t ) = K̄0y(t ) + K̄1ẏ(t ) 46.
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stabilizes the system.However, the output derivative, ẏ, is either impossible or difficult to measure
in practice. Instead, it can be approximated using the backward finite difference ẏ ≈ y(t )−y(t−h)

h ,
giving rise to the time-delay feedback:

u♡(t ) ≈ u(t ) = K̄0y(t ) + K̄1
y(t ) − y(t − h)

h
=

[
K̄0 + K̄1

h

]
y(t ) − K̄1

h
y(t − h).

The resulting delayed static output feedback has the form

u(t ) = K0y(t ) + K1y(t − h), K0 = K̄0 + K̄1/h, K1 = −K̄1/h. 47.

To find an upper bound on h that guarantees the stability of the closed-loop system given by
Equations 45 and 47, we use the following representation:

y(t − h) = y(t ) − hẏ(t ) + d
dt
G(ẏt ), G(ẏt ) =

∫ t

t−h
(s − t + h)ẏ(s)ds. 48.

Then, Equation 45 under Equation 47 can be presented as a neutral system (since G depends on
the past value of the state ẏt = x1t ) with a Hurwitz matrix D:

ż(t ) = Dx(t ), z = x(t ) −
[
0
B

]
K1G(ẏt ), D =

[
0 In

A0 + BK̄0 A1 + BK̄1

]
. 49.

The following Lyapunov functional can be used for the stability analysis of Equation 49:

V (xt ) = zT(t )Pz(t ) +VR, VR = h2
∫ t

t−h
(s − t + h)2ẏT(s)KT

1 RK1ẏ(s)ds, P > 0, R > 0.

Using an extended Jensen’s inequality, one can show that V(xt) ≥ α|x(t)|2 for some α > 0 (39). The
term VR compensates for G in the Lyapunov analysis since the extended Jensen’s inequality gives

V̇R ≤ h2ẏT(t )K̄T
1 RK̄1ẏ(t ) − 4GT(ẏt )KT

1 RK1G(ẏt ).

This leads to

V̇ ≤
[

x(t )
−K1G(ẏt )

]T[
DTP + PD+ diag

{
0, h2K̄T

1 RK̄1
}
DTP[0 BT]T

∗ −4R

][
x(t )

−K1G(ẏt )

]
, 50.

which gives the desired stability LMI. Moreover, this LMI is always feasible for a small enough
h. The above method with V depending on ẏ and not on ÿ (as presented in Section 4.2) can be
directly extended to stochastic systems (11).

4.2. The Direct Lyapunov–Krasovskii Approach
and Sampled-Data Implementation

Another way to express the derivative approximation error is to use Taylor’s expansion with the
remainder in the integral form (which holds if ẏ is absolutely continuous):

y(t − h) = y(t ) − ẏ(t )h +
∫ t

t−h
(s − t + h)ÿ(s)ds ⇒

y(t ) − y(t − h)
h

= ẏ(t ) − r(t ), r(t ) = 1
h

∫ t

t−h
(s − t + h)ÿ(s)ds.

51.

Using this representation, one can rewrite the closed-loop system in Equations 45 and 47 as

ẋ(t ) = Dx(t ) +
[
0
B

]
K1r(t ), 52.
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withD given in Equation 49 and r(t) defined above. A suitable Lyapunov functional has the form

V = xTPx+VR, VR =
∫ t

t−h
(s − t + h)2ÿT(s)KT

1 RK1ÿ(s)ds, P > 0, R > 0. 53.

By the extended Jensen’s inequality (4, lemma 4.7), we have

V̇R ≤ h2ÿT(t )KT
1 RK1ÿ(t ) − 4rT(t )KT

1 RK1r(t ). 54.

Then, differentiating V along Equation 52 and applying the Schur complement, we arrive at the
following LMI, which is always feasible for small h:DTP + PD P[0 BT]T [(A0 + BK̄0 ), (A1 + BK̄1 )]Th2K̄T

1 RK̄1

∗ −4R h2BTK̄T
1 RK̄1

∗ ∗ −h2K̄T
1 RK̄1

 < 0. 55.

For the sampled-data delayed implementation of Equation 46, the approximations

y(t ) ≈ y(tk ), ẏ(t ) ≈ y(tk ) − y(tk−1 )
h

, t ∈ [tk, tk+1 ), tk+1 − tk = h,

lead to the sampled-data delayed control u(t) = K0y(tk) + K1y(tk−1), t � [tk, tk+1), with the gains
defined in Equation 47 (108). LMIs for the stability of the resulting closed-loop system (which
are always feasible for small h) have been derived in Reference 108.

Example 2. Consider the uncertain double integrator ÿ(t ) = gy(t ) + u(t ) with an uncertain g�
[−0.1, 0.1] under the discrete-time measurements y(tk), t� [tk, tk+1), tk+1 − tk = h. This system
cannot be stabilized by u(t) = Ky(tk), t � [tk, tk+1), with any K. An observer-based sampled-data
control for the uncertain system leads to complicated stability conditions and implementation.
To design a simple static output feedback u(t) = K0y(tk) + K1y(tk−1), we choose Equation 46
with K̄0 = −0.25 and K̄1 = −0.0499. The approach proposed in this section leads to LMIs that
are affine in g. By verifying them at the two vertices g = ±0.1, we find that the system is stable
for h � (0, 0.258]. Taking h = 0.258, we conclude, by using Equation 47, that the sampled-data
controller with K0 = −0.4434 and K1 = 0.1934 exponentially stabilizes the system.

4.3. Extensions: Higher-Order Systems, PID, and Nonlinear
and Adaptive Control

Consider an LTI system ẋ(t ) = Ax(t ) + Bu(t ), y = Cx(t ) with relative degree r ≥ 2, i.e.,

CB = CAB = · · · = CAr−2B = 0, CAr−1B ̸= 0.

Relative degree is how many times the output y(t) needs to be differentiated before the input u(t)
appears explicitly. For such systems, it is common to look for a stabilizing controller depending
on the ith-order derivatives (i = 1, . . . r − 1):

u♡(t ) = K̄0y(t ) + K̄1y(1)(t ) + · · · + K̄r−1y(r−1)(t ). 56.

However, usually the derivatives are not accessible. They may be approximated ỹi(t ) ≈ y(i)(t ), e.g.,
using finite differences:

ỹ0(t ) = y(t ), ỹi(t ) = ỹi−1(t ) − ỹi−1(t − h)
h

= 1
hi

i∑
k=0

(
i
k

)
(−1)ky(t − kh), i ∈ N, 57.

with a delay h > 0 and the binomial coefficients
( i
k

) = i!
k!(i−k)! . Substituting the latter into

Equation 56, we obtain the time-delay implementation of the derivative-dependent control:

u(t ) =
r−1∑
i=0

K̄i ỹi(t )
57=

r−1∑
i=0

Kiy(t − ih), Ki = (−1)i
r−1∑
j=i

(
j
i

)
1
h j
K̄ j , i = 0, . . . , r − 1. 58.
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For simple LMIs that guarantee the stability of the resulting closed-loop system as well as the
delayed sampled-data implementation of Equation 56, we direct readers to Reference 109; a
stochastic extension is given in Reference 110.

Finite-difference approximations of the derivative terms in the controller can be efficiently
used for PID control, as suggested in Reference 10 for the second-order systems in continuous
time; a sampled-data implementation is given in Reference 108, and an extension to an extended
PID controller for higher-order systems is given in Reference 111. This approximation, leading
to a delayed static controller, appeared to be efficient for nonlinear control (for sliding mode
control, see References 112 and 113; for practical fixed-time stabilization, see References 114 and
115). Robust adaptive control by using delay under system uncertainty and measurement bias
was presented in Reference 116. Local delay-induced ISS of nonlinear second-order systems was
studied in Reference 117.

5. A TIME-DELAY APPROACH TO AVERAGING
AND AVERAGING-BASED CONTROL

In control theory, the discovery in 1951 of the stabilizing effect of vibration in the inverted
Stephenson–Kapitza pendulum (see 118) inspired the study of control by fast oscillations (119).
This area became much more active (see, e.g., 120, 121) after the 1999 discovery that fast oscillat-
ing feedback gains can stabilize some systems in the cases where these systems cannot be stabilized
by static ones [Brockett’s problem (122)]. Many important control methods, including vibrational
control (119), stabilization by fast switching, and extremum seeking (ES) (123), employ stabiliza-
tion via fast oscillating signals (dithers), and the mathematical explanation of them is related to
averaging (see, e.g., chapter 10 in Reference 124). The existing methods for stability analysis by
averaging employ asymptotic analysis that is based on approximations (see, e.g., 125) and lead to
important qualitative results: The system is stable provided that the averaged system is stable and
the oscillations are fast enough. Thus, for the linear fast-varying system

ẋ(t ) = A
( t

ε

)
x(t ), x(t ) ∈ Rn, t ≥ 0, ε > 0, 59.

with continuous 1-periodic A [i.e., A(τ + 1) = A(τ )�τ ≥ 0], the following holds (124): If the
matrix Aav = ∫ 1

0 A(τ )dτ is Hurwitz, then Equation 59 is asymptotically stable for a small enough
ε. But how can we find an efficient upper bound on ε that preserves the stability of Equation 59?

The first efficient upper bound on ε was suggested in Reference 126 via a time-delay approach
that consisted of two steps: time-delay transformation of Equation 59 and Lyapunov–Krasovskii
analysis. Consider Equation 59 with a piecewise-continuous, almost periodic A, meaning that∫ t+1
t A(τ )dτ = Aav + 1A(t ) ∀t ≥ 0, where Aav is Hurwitz and supt≥0 |1A(t )| is small. Integrating
Equation 59 for all t ≥ ε, we have (cf. Equation 48)

1
ε

∫ t

t−ε

ẋ(s)ds = x(t ) − x(t − ε)
ε

= d
dt

[x(t ) −G(t )], G(t ) ≜ 1
ε

∫ t

t−ε

(s − t + ε)ẋ(s)ds. 60.

Then,

d
dt

[x(t ) −G(t )] =1
ε

∫ t

t−ε

A
( s

ε

)
[x(s) + x(t ) − x(t )]ds,

where 1
ε

∫ t
t−ε

A( s
ε
)ds = Aav + 1A, leads to a neutral system in Hale’s form:

d
dt

[x(t ) −G(t )] = (Aav + 1A)x(t ) −Y (t ), Y (t ) = 1
ε

∫ t

t−ε

A
( s

ε

) ∫ t

s
ẋ(θ )dθ ds, 61.
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with ẋ(θ ) = A( θ

ε
)x(θ ). If x(t) satisfies Equation 59, then it also satisfies Equation 61. Thus,

the stability of Equation 61 guarantees the stability of Equation 59. Note that G = O(ε) and
Y = O(ε) for x = O(1). Therefore, Equation 61 is a perturbation of the exponentially stable av-
eraged system ẋ(t ) = (Aav + 1A) x(t ). Then, appropriate Lyapunov functionals for Equation 61
lead to LMI conditions for finding an upper bound on ε (the length of the distributed delay) that
preserves the exponential stability (126).

The time-delay approach to averaging leads to constructive averaging-based conditions for the
ISS and L2-gain analysis of the perturbed linear systems and to mean square stability of stochastic
systems (127) with extensions to delayed, switched-affine, and discrete-time systems (128, 129).
In Reference 130, this approach led to the first quantitative bounds on the frequency and am-
plitude of the fast-varying high gain of the static output feedback that stabilizes a class of linear
systems (Brockett’s problem). ISS with respect to the average value of disturbances for input-affine
nonlinear systems was suggested in Reference 131.

In Reference 132, the time-delay approach has been applied to the model for constant power
loads in single-phase AC systems Ṗ(t ) = v2 (t )

T [u(t ) − u(t − T )], where P(t) is active power, u(t) is
control, and v(t) is T-periodic voltage. The control objective here is to design a controller such
that limt→∞P(t) = PÆ and limt→∞u(t) = uÆ with a given PÆ > 0 and arbitrary uÆ > 0. The PI
controller with appropriate gains kp and ki achieves the goal:

u(t ) = kp (P⋆ − P(t )) + kixc(t ), ẋc(t ) = P⋆ − P(t ).

5.1. Extremum Seeking via a Time-Delay Approach

ES is a powerful real-time optimization method that does not require knowledge of the system
model. A majority of ES algorithms employ highly oscillating dithers, where the stability analysis
is based on the qualitative averaging theory. In Reference 133, the first results for constructive ES
of quadratic static maps were suggested via a time-delay approach. Consider, for simplicity, static
single-input maps of quadratic form:

y(t ) = f (θ (t )) = f ∗ + f ′′

2
(θ (t ) − θ∗ )2 ,

where y(t ) ∈ R is the output, and θ (t ) ∈ R is the input. Let the extremum value f ∗, point θ∗, and
Hessian f ′′ ̸= 0 be constant. Usually f is unknown, but the sign of f ′′ is known. The objective of ES
is to find a real-time estimate θ (t) of the extremum point θ∗ (θ (t)→ θ∗) based on themeasurements
of y(t). The classical ES algorithm has the form (134)

θ (t ) = θ̂ (t ) + a sin(ωt ), ˙̂
θ (t ) = ka sin(ωt ) · y(t ), 62.

where a and ω are the amplitude and frequency of the dither signal, and the adaptation gain k is
such that kf ′′ < 0. The estimation error θ̃ (t ) = θ̂ (t ) − θ∗ is governed by

˙̃θ (t ) = ka sin(ωt )
[
f ∗ + f ′′

2
(
θ̃ (t ) + a sin(ωt )

)2]
. 63.

Let ω = 2π
ε
. The time-delay transformation in Equation 60 applied to Equation 63 leads to

d
dt

[
θ̃ (t ) −G(t )

] = ka2 f ′′

2
θ̃ (t ) − f ′′

2
Y1(t ) − f ′′Y2(t ), t ≥ ε, 64.

or, with further transformation z = θ̃ (t ) −G(t ), suggested in Reference 135, to

ż(t ) = ka2 f ′′

2
[z(t ) +G(t )] − f ′′

2
Y1(t ) − f ′′Y2(t ), t ≥ ε, 65.
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with the explicitly given expressions for the nonlinear O(ε) terms G, Y1, and Y2 (133). Practical
stability analysis of Equation 65 can be further provided via the Lyapunov–Krasovskii method
or by employing the variation-of-constants formula (133, 135). In particular, for uncertain maps
with f ′′ and f ∗ from known intervals and for any σ 0 > 0 and initial |θ̃ (0)| < σ0, simple LMIs
can be derived for finding the quantitative bounds on the dither frequency, the decay rate of the
exponential convergence, and the ultimate bound on the estimation error.

The time-delay approach to ESwas extended toN-dimensional quadraticmaps and to bounded
ES (introduced in Reference 136 and analyzed via Lie brackets approximations, but in the time-
delay approach, the analysis works in the same manner as for classical ES) and to sampled-data
and delayed implementation of ES (133, 135, 137). Note that in the environment without GPS
orientation (136), where for the known maps the gradient is still unknown, the time-delay ap-
proach provides the first full solution with bounds on the suitable dithers, domains of attractions,
and the resulting ultimate bounds. The time-delay approach to ES was extended to general non-
linear maps with a prior knowledge about the upper bounds of the nonlinear map and its gradient
and Hessian (138), where the time-delay approach suggests a quantitative lower bound of dither
frequency and the ultimate upper bound of estimation error, which is difficult to achieve by the
classical averaging method.

A time-delay approach to a general input-affine system with the averaged system given
by the Lie brackets system was presented in Reference 139 with an application to control
of linear uncertain systems under unknown control directions using ES, as pioneered in
Reference 140. Constructive LMIs were derived for finding upper bounds on the small parameter
and measurement delay that ensure regional practical stability.

5.2. Concluding Remarks on Constructive Methods for Averaging

The time-delay approach to averaging provides approximation-free analysis, allows efficient quan-
titative and accurate qualitative bounds for averaging-based control, and offers tools for averaging
of systems with delays, stochastic systems, and PDEs. It inspires new and more efficient construc-
tive approaches (see, e.g., Reference 141, which includes delay-free transformation and a new
presentation of Equation 59), leading to reliable control that employs averaging.
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