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a b s t r a c t

In this paper, we extend a newly developed time-delay approach of extremum seeking (ES) from
quadratic maps to general nonlinear maps, which substantially expands the scope of application of the
time-delay method. The gradient-based ES in the case of single-variable and multi-variable nonlinear
static maps are considered. Different from the recent literature, the time-delay method in this paper is
applicable to a big family of nonlinear maps satisfying a couple of mild assumptions. By transforming
the original ES system into a kind of time-delay system of neutral type, and further transforming
the neutral delay differential equation into the perturbed ordinary differential equation (ODE), we
provide simple inequalities that guarantee practical stability of the ES closed-loop system. With a prior
knowledge about the upper bounds of the nonlinear map and its gradient and Hessian, the time-delay
approach suggests a quantitative calculation on the lower bound of dither frequency and the ultimate
upper bound of estimation error, which is difficult to achieve by the classical averaging method.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

Extremum Seeking (ES) is an adaptive control strategy to
earch for optimum point of system operation. The idea of ES wit-
essed its first appearance in 1922 (Tan, Moase, Manzie, Nešić, &
areels, 2010). Since Krstic & Wang gave the first rigorous proof

or the algorithm’s convergence in 2000 (Krstić & Wang, 2000),
S has been kept as an active field of research in control theory.
arious ES improvements and applications can be found in the
ecent literature: semi-global stability (Tan, Nešić, & Mareels,
006), Lie-bracket approximation (Dürr, Stanković, Ebenbauer,
Johansson, 2013; Labar, Ebenbauer, & Marconi, 2022), time-

arying ES (Guay & Dochain, 2015) and uncertainty estimation
n ES (Guay, 2021), sampled-data ES (Hazeleger, Nesic, & van de
ouw, 2022; Zhu, Fridman, & Oliveira, 2023), ES for multi-agent

ystems (Haring, Fossy, Silva, & Pavlov, 2022; Krilasevic & Gram-
atico, 2021), ES with stochastic averaging (Liu & Krstic, 2012),
S with unknown control direction (Mele, Tommasi, & Pironti,

✩ A preliminary version for scalar maps was presented on IFAC NOLCOS 2023.
This paper was recommended for publication in revised form by Associate Editor
Raul Ordonez under the direction of Editor Miroslav Krstic.
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2022; Scheinker & Krstić, 2017), ES with time-delay (Malisoff &
Krstic, 2021; Oliveira, Krstic, & Tsubakino, 2016; Zhu & Krstic,
2020), etc.

It is well-known that ES control systems are practically sta-
ble provided tuning parameters meet some conditions like the
dither frequency should be large whereas the dither amplitude
should be small (Ariyur & Krstic, 2003). However, none of existing
asymptotic methods suggest quantitative bounds on these tuning
parameters that preserve the stability. Having an analytically
known bound for the choice of tuning parameters is of impor-
tance for practical applications for which a proper bound on
tuning parameters must typically be found by trial and error.

Recently a novel time-delay approach to periodic averaging
has been presented in Fridman and Zhang (2020) in which ef-
ficient bounds on the small parameter that preserves the system
stability are offered. Later on, the papers Zhu and Fridman (2022),
Zhu et al. (2023) proposed a constructive time-delay approach for
ES in the case of both continuous and sampled-data control. See
also Zhang and Fridman (2023) for Lie-brackets-based averaging
of affine systems via a time-delay approach. Different from the
classical averaging method, the time-delay approach in Zhu and
Fridman (2022) and Zhu et al. (2023) does not use any approx-
imation, and for the first time gives quantitative bounds on the
tuning parameters and extremum seeking error by solving linear
matrix inequalities (LMIs).

Unfortunately, the time-delay approach to ES developed in Zhu
and Fridman (2022) and Zhu et al. (2023) is limited to static maps
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f a standard quadratic form, which cannot capture complex
nd diverse dynamics in practice. In this paper, we remove this
‘quadratic’’ restriction so that the time-delay approach is avail-
ble for ES of general nonlinear static maps, which substantially
xpands the application range of the method. Motivated by Yang
nd Fridman (2023) where the map considered is still confined
o a quadratic form, instead of analyzing the time-delay system
f neutral type directly, we further transform the neutral delay
ifferential equation into the retarded system with the nominal
art in the form of the averaged ordinary differential equation
ODE), which renders the Lyapunov-based analysis rather simple
nd reduces the conservativeness of the bounds on tuning pa-
ameters and estimation error. A preliminary conference result
or scalar systems via a more complicated analysis that employs
yapunov–Krasovskii method for neutral type systems had been
resented in Zhu and Fridman (2023).
The rest organization of the paper is as follows: In Section 2,

e apply the time-delay approach to the gradient-based ES of
calar static maps. Section 3 extends the time-delay approach
o vector static maps. Section 4 provides two examples with
imulation results, and Section 5 summarizes some conclusions.

otation:

• For a scalar x ∈ R, we denote |x| to be the absolute value of
x.

• For a vector x = [x1, x2, . . . , xn]T ∈ Rn, we denote |x| to be
the Euclidean norm |x| =

√
x21 + x22 + · · · + x2n.

• For a matrix A ∈ Rn×n, we denote |A| to be the 2-norm
|A| =

√
λmax

(
ATA

)
.

• For a function q(θ ) : D → R, by q(θ ) ∈ C2(D), we refer to
that q(θ ) has continuous derivatives up to the 2nd-order in
the domain θ ∈ D.

2. Scalar systems

For conceptional clearness, we start with scalar systems in this
section. The more general vector systems will be discussed in the
next section.

Consider single-variable nonlinear static maps

y(t) = q(θ (t)) (1)

where y(t) ∈ R is the measurable output and θ (t) ∈ R is the
control input. The map (1) satisfies the following assumptions.

Assumption 1. There exist θ∗
∈ R, σ > 0 and small a > 0 such

that q (θ) ∈ C2 (θ∗
− σ − a, θ∗

+ σ + a), and the following hold:

q′
(
θ∗

)
= 0, q′′(θ∗) = H < 0, (2)

q′
(
θ∗

+ ∆
)
· ∆ ≤ −µ (σ) · ∆2 < 0, ∀0 < |∆| < σ (3)

where µ(σ ) > 0 is a known σ -dependent constant, which
decreases monotonically in σ .

In Assumption 1, the condition (3) is not restrictive:

′ (θ∗
+ ∆) · ∆ =

[
q′ (θ∗) +

∫ θ∗
+∆

θ∗ q′′ (s) ds
]

· ∆

s=θ∗
+ξ∆

HHHHHHH
∫ 1
0 q′′ (θ∗

+ ξ∆) dξ · ∆2
(4)

The inequality q′′ (θ∗) < 0 and the continuity of q′′ (θ) indicates
hat there always exists σ > 0 such that for all deviations |∆| <
, the average from q′′ (θ∗) to q′′ (θ∗

+ ∆) is negative. Thus,
1
0 q′′ (θ∗

+ ξ∆) dξ ≤ −µ (σ) < 0, ∀0 < |∆| < σ. (5)

hen, (3) holds.
For Assumption 1, note that:
2

• Eq. (2) suggests the existence of the extremum. Namely,
θ = θ∗ is an input extremum of the map q(θ ) at which
the output has a local maximum y = q (θ∗). Without loss
of generality, the maximum case is taken into account. The
minimum case could be handled in a parallel way under the
assumption with the opposite sign such that q′ (θ∗) = 0,
q′′ (θ∗) > 0, q′ (θ∗

+ ∆) · ∆ ≥ µ (σ) · ∆2 > 0.
• Condition (3) indicates the uniqueness of the extremum

such that q′(θ ) ̸= 0, ∀θ ̸= θ∗, θ ∈ (θ∗
− σ − a, θ∗

+ σ + a).
The extremum uniqueness within the σ -neighborhood is
important since such a neighborhood infers the region of
attraction of ES (see Example 1), which is consistent with
the local stability of ES in the literature. For practical im-
plementation of ES algorithm, it is necessary to determine
σ -value of an unknown map in advance by some techniques
like system identification, empirical method, and trail and
error.

ssumption 2. For any |∆| < σ and a defined in Assumption 1,
iven ξ ∈ [−1, 1], we have

q (θ∗
+ ∆)| < q0(σ ),

q′ (θ∗
+ ∆)

⏐⏐ < q1(σ ),
⏐⏐q′′ (θ∗

+ ∆)
⏐⏐ < q2(σ ),

q′′ (θ∗
+ ∆ + aξ) − q′′ (θ∗)

⏐⏐ < L |∆ + aξ |

(6)

here q0(σ ), q1(σ ), q2(σ ), L are known positive constants.

In the literature, the map (1) is usually unknown, the bounds
n the map and its derivatives are given for analysis but are not
upposed to be known (Guay & Dochain, 2015; Tan et al., 2006).
n the face of a ‘‘black box’’ model, it is hard to choose tuning
arameters for a reliable control and even to perform simulations.
Here we study a ‘‘grey box’’ by Assumption 2: the map q(θ ) is

nknown, but a few of bounds of the map and its derivatives (up
o the 2nd-order) are known, and the 2nd-order derivative is local
ipschitz with a known Lipschitz constant (here the Lipschitz
ondition is not necessary, but it reduces the conservativeness of
he LMI-based analysis later. See the bound (29) of R(t) defined
n (17) and Remark 3). When the knowledge of the bounds in
6) is unavailable, the time-delay approach proposed in the paper
resents a qualitative analysis in a more accurate way compara-
ive to the classical averaging method (see Remarks 1–2). When
he prior knowledge in (6) is available, the time-delay method
llows a quantitative analysis by which we are able to calculate
he upper bound of the key tuning parameter (the dither period
given in (19)) and the ultimate bound of the estimation error
f ES (defined by (10)). A compromise between the quantitative
nalysis with the plant information and the qualitative analysis
ithout the model knowledge is always there. The more precisely
e know the map bounds specified in Assumptions 1–2, the more
ccurately we are able to analyze the system’s performance and
stimate the tuning parameters’ range.

xample 1. Consider the following nonlinear static map whose
rajectory is shown in Fig. 1:

(θ) =
1
3θ

3
− θ (7)

It is seen that θ∗
= −1 and θ∗

= 1 are the local maximum
and minimum, respectively. At the local maximum θ∗

= −1, the
derivatives up to the 2nd-order are as follows:⎧⎨⎩q′ (θ∗) = θ2

− 1
⏐⏐⏐
θ=θ∗=−1

= 0

q′′ (θ∗) = 2θ
⏐⏐⏐
θ=θ∗=−1

= −2 < 0
(8)

which means that the property (2) in Assumption 1 is satisfied.
In order to meet the condition (3) in Assumption 1, we have

q′ (θ∗
+ ∆) · ∆ =

[
(θ∗

+ ∆)2 − 1
]
∆[ 2 ]

2 2
(9)
= (∆ − 1) − 1 ∆ = (∆ − 2) ∆ ≤ −µ (σ) ∆ < 0
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Fig. 1. Nonlinear static map: q (θ) =
1
3 θ3

− θ .

Fig. 2. ES for single-variable nonlinear static maps.

hus ∆ < σ < 2, which indicates that the positive deviation to
∗

= −1 cannot go beyond 2. In other words, θ∗
+ ∆ < 1 for

θ∗
= −1. This is consistent with the perceptual intuition from

Fig. 1, which indicates that you cannot find the local maximum
θ∗

= −1 if the initial value starts from any point such that
θ (0) ≥ 1. ■

To render θ (t) → θ∗, we introduce θ̂ (t) as a real time estimate
of θ∗ with the estimation error being

θ̃ (t) = θ̂ (t) − θ∗ (10)

We employ the gradient-based ES algorithm in Fig. 2,

θ (t) = θ̂ (t) + a sin (ωt) ,
˙̂
θ (t) = k ·

2
a sin (ωt) · y(t)

(11)

here the sign of k is opposite to the sign of the Hessian q′′(θ∗)
nd the initial value θ̂ (0) ∈ [θ∗

− σ0, θ
∗
+ σ0], where σ0 < σ is a

known constant.
To analyze the convergence of ES (11), we consider Taylor

expansion of (1) such that

q (θ (t)) = q
(
θ∗

+ θ̃ (t) + a sin(ωt)
)

= q
(
θ∗

+ θ̃ (t)
)
+ q′

(
θ∗

+ θ̃ (t)
)
a sin(ωt)

+
q′′(θ∗

+θ̃ (t)+ξ (t)a sin(ωt))
2 a2 sin2(ωt)

(12)

where ξ (t) ∈ (0, 1). An alternative Taylor formula is suggested as
follows:
q(θ (t)) = q (θ∗) + q′ (θ∗)

(
θ̃ (t) + a sin(ωt)

)
+

q′′(θ∗)
2

(
θ̃ (t) + a sin(ωt)

)2
+

q′′′(θ∗
+ξ (t)(θ̃ (t)+a sin(ωt)))

3!

(
θ̃ (t) + a sin(ωt)

)3
where θ∗ is treated as the baseline and θ̃ (t) + a sin(ωt) is re-
garded as increment. Although the above equation is of a standard
3

quadratic form plus a remainder term, such a handling indi-
cates that we get one more restrictive assumption that the map
q(θ ) has the derivatives with respect to θ up to the 3rd-order.
Furthermore, substituting the map q (θ (t)) with the remainder
q′′′(·)

3!

(
θ̃ (t) + a sin(ωt)

)3
into the update law (11), we will get the

term 2k
a sin(ωt) q

′′′(·)

3! θ̃3(t) in the error dynamical equation, which
will be hard to address by the classical averaging or the time-
delay method. This is due to the fact that q′′′ (·) depends upon the
dither sin(ωt) and is a fast time-varying variable whose average
is not zero.

In the presence of σ defined in Assumption 1 and the defi-
nitions of (10)–(11), the overall bound of the estimation error is
supposed to satisfy⏐⏐θ̃ (t)⏐⏐ < σ, t ≥ 0 (13)

hen we have θ∗
− σ − a < θ (t) = θ∗

+ θ̃ (t) + a sin (ωt) <

θ∗
+ σ + a, so that the domain of θ is in line with the domain

in Assumption 1. The bound (13) will be guaranteed by the LMI
conditions (31) in Theorem 1. Notice that the domain defined by
the overall bound (13) is not identical with the domain given
by the ultimate bound (33) in Theorem 1 (see Fig. 4 and the
explanation in the case of double-variable maps).

Substituting (12) into the 2nd equation of (11) and taking the
time-derivative of (10), the dynamics of the estimation error is
governed by

˙̃
θ (t) =

2k
a sin(ωt)·

[
q
(
θ∗

+ θ̃ (t)
)
+ q′

(
θ∗

+ θ̃ (t)
)

×a sin(ωt) +
q′′(θ∗

+θ̃ (t)+ξ (t)a sin(ωt))
2 a2 sin2(ωt)

]
= kq′

(
θ∗

+ θ̃ (t)
)
− kq′

(
θ∗

+ θ̃ (t)
)
cos(2ωt)

+
2k
a q

(
θ∗

+ θ̃ (t)
)
sin(ωt) + kaH(t) sin3(ωt)

(14)

where H(t) = q′′
(
θ∗

+ θ̃ (t) + ξ (t)a sin(ωt)
)
is defined for nota-

tional simplicity, and 2 sin2(ωt) = 1 − cos(2ωt) is used.

Remark 1. To analyze the error system (14), a majority of existing
literature on ES resort to averaging theory in Khalil (2002, Chapter
10.4). To be specific, by setting the dither frequency ω to be
large while the adaptation gain k to be small, the state variable
θ̃ (t) is slowly time-varying in comparison with the dither signals
cos(2ωt), sin(ωt), sin3(ωt) as if it is a ‘‘freezing’’ constant. Then,
q′

(
θ∗

+ θ̃ (t)
)
and q

(
θ∗

+ θ̃ (t)
)
are treated as ‘‘freezing’’ constants

as well. By selecting the dither amplitude a to be small, the last
term kaH(t) sin3(ωt) on the right-hand side of (14) is small and
thus neglected. Taking advantage of the fact that the average of
sin(ωt) and cos(2ωt) over one period T =

2π
ω

are zeros, the
averaged system is derived as
˙̃
θav(t) = kq′

(
θ∗

+ θ̃av(t)
)

−
k
T

∫ T
0 cos(2ωτ )dτ · q′

(
θ∗

+ θ̃av(t)
)

+
2k
aT

∫ T
0 sin(ωτ )dτ · q

(
θ∗

+ θ̃av(t)
)

kq′
(
θ∗

+ θ̃av(t)
) (15)

ote that here q
(
θ∗

+ θ̃av(t)
)
and q′

(
θ∗

+ θ̃av(t)
)
are approxi-

mated as constants and outside the integral. The system (15)
is gradient-based and locally stable under the condition (3) in
Assumption 1, which is easily seen from the following fact: if
θ̃av(t) > 0, then the gradient q′(·) < 0 and the derivative ˙̃

θav(t) <

, which indicates θ̃av(t) decreases to zero, whereas if θ̃av(t) < 0,
then the gradient q′(·) > 0 and the derivative ˙̃

θav(t) > 0, which
nfers θ̃av(t) increases to zero.

The averaged system (15) is an approximation of the original
ystem (14). In what sense the behavior of the averaged system



G. Pan, Y. Zhu, E. Fridman et al. Automatica 166 (2024) 111710

i
e
a
w

s
r

θ

i

F

R

t

θ

I
n

ω

t

p
g
s
q
s
s

u

−

=

h

G

a

w

Y

w

R
t

|

⏐⏐⏐
mitates the behavior of the original system? The problem is
ssential, as discussed in Khalil (2002, Chapter 10.4), but the
nswer is perhaps not straightforward by just comparing (15)
ith (14). ■

Note that H(t) = q′′
(
θ∗

+ θ̃ (t) + ξ (t)a sin(ωt)
)
in (14) arises

from the Taylor remainder in (12). It is close to the Hessian
H = q′′ (θ∗) in the extremum point when both θ̃ (t) and a are
mall. Then, the ES closed-loop error system (14) can be further
ewritten as
˙̃ (t) = kq′

(
θ∗

+ θ̃ (t)
)
− kq′

(
θ∗

+ θ̃ (t)
)
cos(2ωt)

+
2k
a q

(
θ∗

+ θ̃ (t)
)
sin(ωt) + kaH sin3(ωt)

+ka (H(t) − H) sin3(ωt)

(16)

n which the average of kaH sin3(ωt) is zero. By defining

(t) = − cos (2ωt) q′
(
θ∗

+ θ̃ (t)
)

+
2
a sin (ωt) q

(
θ∗

+ θ̃ (t)
)
+ aH sin3 (ωt)

(t) = (H(t) − H) sin3(ωt),

(17)

he system (16) is compactly expressed as
˙̃ (t) = kq′

(
θ∗

+ θ̃ (t)
)
+ kF(t) + kaR(t), t ≥ 0 (18)

f the map (1) is of a standard quadratic form instead of a general
onlinear form, then R(t) is equal to 0.
Define

=
2π
ε

(19)

o re-scale the dither period to be ε. Via the time-delay method
to averaging, we integrate F(t) in (17) over one dither period
[t − ε, t] for t ≥ ε, we get
1
ε

∫ t
t−ε

F(τ )dτ = −
1
ε

∫ t
t−ε

cos
( 4π

ε
τ
)
q′

(
θ∗

+ θ̃ (τ )
)
dτ

+
2
aε

∫ t
t−ε

sin
( 2π

ε
τ
)
q
(
θ∗

+ θ̃ (τ )
)
dτ

(20)

where we use
∫ t
t−ε

sin3 ( 2π
ε

τ
)
dτ = 0. Note that here we em-

loy the backward integral
∫ t
t−ε

dτ rather than the forward inte-
ral

∫ t+ε

t dτ so that we are able to get a distributed time-delay
ystem below. Besides, different from (15), q′

(
θ∗

+ θ̃ (t)
)

and(
θ∗

+ θ̃ (t)
)
are not handled as ‘‘freezing’’ constants and put out-

ide the integral, thus we can get a more precisely transformed
ystem than the averaged system (15).
To deal with the 1st term on the right-hand side of (20), we

se
1
ε

∫ t
t−ε

cos
( 4π

ε
τ
)
q′

(
θ∗

+ θ̃ (τ )
)
dτ

1
ε

∫ t
t−ε

cos
( 4π

ε
τ
) [

q′
(
θ∗

+ θ̃ (t)
)
− q′

(
θ∗

+ θ̃ (τ )
)]

dτ

=
1
ε

∫ t
t−ε

cos
( 4π

ε
τ
) ∫ t

τ
q′′

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

(21)

where we employ
∫ t
t−ε

cos
( 4π

ε
τ
)
dτ · q′

(
θ∗

+ θ̃ (t)
)

= 0.
To deal with the 2nd term on the right-hand side of (20), we

ave
2
aε

∫ t
t−ε

sin
( 2π

ε
τ
)
q
(
θ∗

+ θ̃ (τ )
)
dτ

= −
2
aε

∫ t
t−ε

sin
( 2π

ε
τ
) [

q
(
θ∗

+ θ̃ (t)
)
− q

(
θ∗

+ θ̃ (τ )
)]

dτ

= −
2
aε

∫ t
t−ε

sin
( 2π

ε
τ
) ∫ t

τ
q′

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

(22)

where we use
∫ t
t−ε

sin
( 2π

ε
τ
)
dτ · q

(
θ∗

+ θ̃ (t)
)

= 0.
We define

(t) =
1
ε

∫ t
t−ε

(τ − t + ε)F(τ )dτ (23)

nd employ the relation

d [
˜

] ˙̃ k ∫ t (24)

dt θ (t) − kG(t) = θ (t) − kF(t) +

ε t−ε
F(τ )dτ <

4

where G(t) is borrowed from Fridman and Shaikhet (2016) to
transform the original delay-free ES error system (18) into the
system with the distributed time-delay (25), which is a perturba-
tion of the averaged system (15).

Substituting (21)–(22) into (20), and further substituting (20)
into (24), we present the closed-loop error system as follows:
d
dt

[
θ̃ (t) − kG(t)

]
= kq′

(
θ∗

+ θ̃ (t)
)
−

2k
a Y1(t) − kY2(t)

+kaR(t), t ≥ ε
(25)

here

1(t) =
1
ε

∫ t
t−ε

∫ t
τ
sin

( 2π
ε

τ
)
q′

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

Y2(t) = −
1
ε

∫ t
t−ε

∫ t
τ
cos

( 4π
ε

τ
)
q′′

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

(26)

ith ˙̃
θ (t) defined by (18).

Denoting (Yang & Fridman, 2023)

z(t) = θ̃ (t) − kG(t) (27)

the closed-loop system (25) becomes

ż(t) = kq′ (θ∗
+ z(t) + kG(t))

−
2k
a Y1(t) − kY2(t) + kaR(t), t ≥ ε

(28)

emark 2. Comparing (25) with (15), it is observed that the
ime-delay system (25) has the same dominant part d

dt θ̃ (t) =

kq′
(
θ∗

+ θ̃ (t)
)
as the stable averaged system (15), and has a few

of additional perturbation terms G(t), Y1(t), Y2(t), kaR(t). If ˙̃
θ (t) is

of order O(1), then the integral terms G(t) in (23) and Y1(t), Y2(t)
in (26) are of order O(ε) (see (30)), while the term kaR(t) is of
order O(a). They are close to zero when ε and a are tuned to
be small enough. Namely, the time-delay plant (25) with explicit
disturbances G(t), Y1(t), Y2(t), kaR(t) is a more precise model
than the classical averaged system (15) in terms of behavior
description of the original ES system (18). The larger ε and a, the
stronger effect of G(t), Y1(t), Y2(t), kaR(t). As a result, to find the
upper bounds on ε and a that preserve the practical stability of
the ES system is essential, but these theoretical bounds have not
been suggested in the literature.

What is more important, unlike the conversion from (14)
into (15) via averaging, we do not employ any approximation or
neglect anything in the transformation from (18) into (25) via
the time-delay approach. Consequently, the solution of the ES
system (18) is also a solution of the time-delay system (25), and
we conclude the stability of the original ES system via the stability
of the time-delay system.

In addition, distinct from our previous works (Zhu & Fridman,
2022; Zhu et al., 2023) where we directly analyzed the plant (25)
which is a kind of neutral type differential equation, here we
introduce the variable change (27) as in Yang and Fridman (2023)
and analyze the ordinary differential Eq. (28) which renders the
derivation to be simpler. ■

Under the bounds (6) in Assumption 2 and the overall bound
(13), the upper bounds on F(t), R(t) and ˙̃

θ (t) are obtained from
Eqs. (17) and (18) such that

|F(t)| ≤
⏐⏐q′

(
θ∗

+ θ̃ (t)
)⏐⏐ +

2
a

⏐⏐q (
θ∗

+ θ̃ (t)
)⏐⏐ + a |H|

< q1(σ ) +
2
aq0(σ ) + aq2(σ ) ≜ ∆F

R(t)| ≤
⏐⏐q′′

(
θ∗

+ θ̃ (t) + ξ (t)a sin
( 2π

ε
t
))

− q′′ (θ∗)
⏐⏐

< L
⏐⏐θ̃ (t) + ξ (t)a sin

( 2π
ε
t
)⏐⏐ < L(σ + a) ≜ ∆R

˙̃
θ (t)

⏐⏐⏐ ≤ k
⏐⏐q′

(
θ∗

+ θ̃ (t)
)⏐⏐ + k |F(t)| + ka |R(t)|

(29)
kq1(σ ) + k∆F + ka∆R ≜ ∆θ
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T⏐⏐⏐⏐

w
L

T

t
c
t
t

e
(

P

t

z

≤

<

L

t

ccordingly, from (23) and (26), we have

G(t)| =
1
ε

⏐⏐⏐∫ t
t−ε

(τ − t + ε)F(τ )dτ
⏐⏐⏐

1
ε

∫ t
t−ε

(τ − t + ε)dτ · sup |F(τ )| < ∆F
2 ε

|Y1(t)| =
1
ε

⏐⏐⏐∫ t
t−ε

∫ t
τ
sin

( 2π
ε

τ
)
q′

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

⏐⏐⏐
1
ε

∫ t
t−ε

∫ t
τ
dsdτ · q1(σ )∆θ =

q1(σ )∆θ

2 ε

Y2(t)| =
1
ε

⏐⏐⏐∫ t
t−ε

∫ t
τ
cos

( 4π
ε

τ
)
q′′

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

⏐⏐⏐
< 1

ε

∫ t
t−ε

∫ t
τ
dsdτ · q2(σ )∆θ =

q2(σ )∆θ

2 ε

(30)

heorem 1. Under Assumptions 1–2 with a given σ > 0, consider
he closed-loop system consisting of the single-variable map (1) and
he ES controller (11), as well as the initial condition

⏐⏐θ̃ (0)⏐⏐ ≤ σ0 <
. Given tuning parameters σ0, k, a, δ, ε∗ > 0 where a and ε∗ are
mall, let scalar decision variables λ1, λ2, λ3, λ4, λ5 > 0 satisfy the
MIs:

1 =

⎡⎢⎢⎢⎢⎣
−2(kµ(σ )−δ) 0 −

2k
a −k k ka

∗ −
λ1
ε∗

+λ5k2q22(σ ) 0 0 0 0

∗ ∗ −
λ2
ε∗

0 0 0

∗ ∗ ∗ −
λ3
ε∗

0 0
∗ ∗ ∗ ∗ −λ5 0
∗ ∗ ∗ ∗ ∗ −λ4a

⎤⎥⎥⎥⎥⎦
< 0,
Ω2 = σ0 + (∆θ + k∆F ) ε∗ < σ,

Ω3 =

(
λ1∆2

F+λ2q21(σ )∆2
θ
+λ3q22(σ )∆2

θ

)
ε∗

+4λ4a∆2
R

8δ(
σ −

k∆F
2 ε∗

)2

(31)

hen, ∀ε ∈ (0, ε∗], the estimation error satisfies

θ̃ (t)
⏐⏐ ≤

⏐⏐θ̃ (0)⏐⏐ + ∆θ t < σ, t ∈ [0, ε],

θ̃ (t)
⏐⏐ ≤

[ (⏐⏐θ̃ (ε)⏐⏐ +
k∆F
2 ε

)2
e−2δ(t−ε)

+
(
1 − e−2δ(t−ε)

)
×

(
λ1∆2

F+λ2q21(σ )∆2
θ
+λ3q22(σ )∆2

θ

)
ε+4λ4a∆2

R
8δ

] 1
2

+
k∆F
2 ε < σ, t ∈ [ε, ∞)

(32)

and is exponentially attracted to the ball

Θ =

{
θ̃ ∈ R2

:
⏐⏐θ̃ ⏐⏐ ≤

k∆F
2 ε

+

√ (
λ1∆2

F+λ2q21(σ )∆2
θ
+λ3q22(σ )∆2

θ

)
ε+4λ4a∆2

R
8δ

} (33)

hich is adjustable via the tuning parameters ε and a. Moreover,
MIs (31) are always feasible for small enough ε∗ and a.

The proof of Theorem 1 follows the argument of the proof of
heorem 2 given in the Appendix.
As revealed in the proof of the Appendix, in (28), the per-

urbation terms Y1(t), Y2(t) and R(t) are bounded and further
ompensated separately in the Lyapunov-based analysis. An al-
ernative way is to group Y1(t), Y2(t) and R(t) as a whole and not
o compensate it in the Lyapunov-based analysis.

Next, we present the alternatively simple calculation, but the
xponential convergence about the transient performance like
32) cannot be suggested by this way.

Defining

(t) = q′ (θ∗
+ z(t) + kG(t)) − q′ (θ∗

+ z(t))

−
2
aY1(t) − Y2(t) + aR(t)

(34)

he system (28) can be presented as

˙(t) = kq′
(
θ∗

+ z(t)
)
+ kP(t), t ≥ ε (35)
 k

5

Using differential mean-value theorem, the 1st line on the right-
hand side of (34) is handled as follows:

q′ (θ∗
+ z(t) + kG(t)) − q′ (θ∗

+ z(t))
= q′′ (θ∗

+ z(t) + νkG(t)) · kG(t)
(36)

where ν ∈ (0, 1).
Making use of (30) and (36), the upper bound of P(t) is derived

as
|P(t)| ≤

⏐⏐q′ (θ∗
+ z(t) + kG(t)) − q′ (θ∗

+ z(t))
⏐⏐

+
2
a |Y1(t)| + |Y2(t)| + a |R(t)|

sup
⏐⏐q′′ (θ∗

+ z(t) + νkG(t))
⏐⏐ · |kG(t)|

+
2
a |Y1(t)| + |Y2(t)| + a |R(t)|

kq2(σ )∆F
2 ε +

q1(σ )∆θ

a ε +
q2(σ )∆θ

2 ε + a∆R ≜ ∆P

(37)

yapunov candidate is selected as V (t) =
1
2 z

2(t). Taking its
derivative along (35), under (3) in Assumption 1, we have

V̇ (t) = kq′ (θ∗
+ z(t)) · z(t) + kP(t) · z(t)

< −kµ(σ )z2(t) + k |z(t)| ∆P , t ≥ ε
(38)

When |z(t)| ≥
∆P

µ(σ ) , V̇ (t) is negative, which means that z(t)

decreases to the set
{
|z(t)| <

∆P
µ(σ )

}
. In order to keep the overall

bound
⏐⏐θ̃ (t)⏐⏐ < σ assumed in (13), we need:⎧⎪⎪⎪⎨⎪⎪⎪⎩

⏐⏐θ̃ (t)⏐⏐ =

⏐⏐⏐θ̃ (0) +
∫ t
0

˙̃
θ (τ )dτ

⏐⏐⏐ <
⏐⏐θ̃ (0)⏐⏐ + ∆θε < σ,

t ∈ [0, ε]⏐⏐θ̃ (t)⏐⏐ = |z(t) + kG(t)| < supt≥ε |z(t)| +
k∆F
2 ε < σ,

t ∈ [ε, ∞)

(39)

The above inequalities can be guaranteed by the linear inequali-
ties for finding ε∗:⎧⎨⎩σ0 + (∆θ + k∆F )ε∗ < σ,[

kq2(σ )∆F
2 +

(
q1(σ )

a +
q2(σ )

2

)
∆θ

]
ε∗

+a∆R

µ(σ ) +
k∆F
2 ε∗ < σ

(40)

and the attractive ball for the estimation error has the form:

Θ =

{
θ̃ ∈ R :

⏐⏐θ̃ ⏐⏐ <

{ [
kq2(σ )∆F

2 +

(
q1(σ )

a +
q2(σ )

2

)
∆θ

]
ε

+a∆R

}
·

1
µ(σ ) +

k∆F
2 ε

}
, ε ∈ (0, ε∗] .

(41)

Proposition 1. Under Assumptions 1–2 with a given σ > 0,
consider the closed-loop system consisting of the single-variable
map (1) and the ES controller (11), as well as the initial condition⏐⏐θ̃ (0)⏐⏐ ≤ σ0 < σ . Given tuning parameters k, a, ε∗ > 0 and σ0,
let the linear inequalities (40) with respect to ε∗ are satisfied. Then,
∀ε ∈ (0, ε∗], the estimation error satisfies (39), and is attracted to
the ball (41).

To illustrate that (39) is implied by (40), we consider two
different situations. Firstly, if the initial condition |z(ε)| <

∆P
µ(σ ) ,

then z(t) for t ≥ ε stays in
{
|z(t)| <

∆P
µ(σ )

}
and from the 2nd

equation of (39) we have
⏐⏐θ̃ (t)⏐⏐ <

∆P
µ(σ ) +

k∆F
2 ε < σ which holds

due to the 2nd inequality of (40). If ∆P
µ(σ ) ≤ |z(ε)| < σ −

k∆F
2 ε,

hen |z(t)| for t ≥ ε monotonically decreases due to (38) until
it reaches the region |z(t)| <

∆P
µ(σ ) . Then when t ≥ ε, we have⏐⏐θ̃ (t)⏐⏐ ≤ |z(t)| + k |G(t)| < |z(ε)| +

k∆F
2 ε <

⏐⏐θ̃ (ε)⏐⏐ + k∆Fε < σ
which is ensured by the 1st inequality of (40).

Remark 3. Comparing (14) with (16), we utilize kaH(t) sin3(ωt) =

aH sin3(ωt)+ka H(t) − H sin3(ωt), in which the average of the
( )
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=
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∫

T

ormer is zero, and |H(t) − H| in the latter is upper bounded by
29) under Lipschitz condition.

An alternative bound to (29) without Lipschitz assumption is
hat |H(t)| < |q2(σ )| under (6), which is more conservative in
terms of LMI-based analysis. By an empirical study via simulation
examples in Section 4, we have supt≥0 |H(t) − H| ≪ supt≥0
|H(t)|. ■

3. Vector systems

In this section, we extend the time-delay approach from scalar
plants to vector plants, which is non-trivial. For notational sim-
plicity, we address the case of two variables. The method could
be generalized to cases with any n variables in a recursive way,
but the calculation is much longer.

Consider the two-variable static maps given by

y(t) = q (θ (t)) (42)

where y(t) ∈ R is the measurable output and θ (t) = [θ1(t), θ2(t)]T
∈ R2 is the control input vector. The map (42) meets the following
assumptions.

Assumption 3. There exist a constant vector θ∗
=

[
θ∗

1 , θ∗

2

]T
∈ R2,

constants σ > 0 and a > 0, the map q (θ) = q (θ1, θ2) ∈

C2
[(

θ∗

1 − σ − a, θ∗

1 + σ + a
)

×
(
θ∗

2 − σ − a, θ∗

2 + σ + a
)]
, and

the following hold:
∂q
∂θ

(θ∗) =
[

∂q
∂θ1

(θ∗) ∂q
∂θ2

(θ∗)
]

= 0,

∂2q
∂θ2

(θ∗) =

⎡⎣ ∂2q
∂θ21

(θ∗) ∂2q
∂θ1∂θ2

(θ∗)

∗
∂2q
∂θ22

(θ∗)

⎤⎦ = H < 0,
(43)

∂q
∂θ

(θ∗
+ ∆) · ∆ ≤ −µ (σ) · |∆|

2 < 0,
= [∆1, ∆2]T , ∀0 < |∆i| < σ, i = 1, 2

(44)

here µ(σ ) > 0 is a σ -dependent constant.

ssumption 4. For any ∆ = [∆1, ∆2]T with 0 < |∆i| < σ ,
= 1, 2 and a defined in Assumption 3, given ξ = [ξ1, ξ2]T with

ξ1, ξ2 ∈ [−1, 1], we have

|q (θ∗
+ ∆)| < q0(σ ),⏐⏐ ∂q

∂θ
(θ∗

+ ∆)
⏐⏐ < q1(σ ),

⏐⏐⏐ ∂2q
∂θ2

(θ∗
+ ∆)

⏐⏐⏐ < q2(σ ),

∂2q
∂θ2

(θ∗
+ ∆ + aξ) −

∂2q
∂θ2

(θ∗)

⏐⏐⏐ < L |∆ + aξ |

(45)

here q0(σ ), q1(σ ), q2(σ ), L are known positive constants.

The condition (44) is not restrictive as shown in the following
calculation.
∂q
∂θ

(θ∗
+ ∆) · ∆[

∂q
∂θ1

(θ∗
1 +∆1,θ∗

2 +∆2)
∂q
∂θ2

(θ∗
1 +∆1,θ∗

2 +∆2)
]
·
[

∆1
∆2

]
∂q
∂θ1

(
θ∗

1 + ∆1, θ
∗

2 + ∆2
)
· ∆1

+
∂q
∂θ2

(
θ∗

1 + ∆1, θ
∗

2 + ∆2
)
· ∆2

(46)

Define two functions f1(ξ ), f2(ξ ), ξ ∈ [0, 1] as

f1(ξ ) =
∂q
∂θ1

(
θ∗

1 + ξ∆1, θ
∗

2 + ξ∆2
)

f2(ξ ) =
∂q
∂θ2

(
θ∗

1 + ξ∆1, θ
∗

2 + ξ∆2
) (47)

nder the fact that

1(0) = f2(0) = 0

f1(1) = f1(0) +
∫ 1
0 f ′

1(ξ )dξ =
∫ 1
0 f ′

1(ξ )dξ∫ 1 ′
∫ 1 ′

(48)
2(1) = f2(0) + 0 f2(ξ )dξ = 0 f2(ξ )dξ
6

Fig. 3. ES for a two-variable static map.

he formula (46) is expressed as
∂q
∂θ

(θ∗
+ ∆) · ∆ = f1(1)∆1 + f2(1)∆2∫ 1

0

[
∆1 · f ′

1(ξ ) + ∆2 · f ′

2(ξ )
]
dξ

(49)

urthermore,
′

1(ξ ) =
∂2q
∂θ21

(
θ∗

1 + ξ∆1, θ
∗

2 + ξ∆2
)
· ∆1

+
∂2q

∂θ1∂θ2

(
θ∗

1 + ξ∆1, θ
∗

2 + ξ∆2
)
· ∆2

′

2(ξ ) =
∂2q

∂θ2∂θ1

(
θ∗

1 + ξ∆1, θ
∗

2 + ξ∆2
)
· ∆1

+
∂2q
∂θ22

(
θ∗

1 + ξ∆1, θ
∗

2 + ξ∆2
)
· ∆2

(50)

ubstituting (50) into (49) and using (θ∗
+ ξ∆) =

θ∗

1 + ξ∆1, θ
∗

2 + ξ∆2
)
for notational simplicity, we get

∂q
∂θ

(θ∗
+ ∆) · ∆ =

∫ 1
0

[
∂2q
∂θ21

(θ∗
+ ξ∆) · ∆2

1

+2 ∂2q
∂θ1∂θ2

(θ∗
+ ξ∆) · ∆1∆2 +

∂2q
∂θ22

(θ∗
+ ξ∆) · ∆2

2

]
dξ

∫ 1
0 [ ∆1 ∆2 ] ·

⎡⎣ ∂2q
∂θ21

(θ∗
+ξ∆) ∂2q

∂θ1∂θ2
(θ∗

+ξ∆)

∗
∂2q
∂θ22

(θ∗
+ξ∆)

⎤⎦ ·
[

∆1
∆2

]
dξ

(51)

The inequality ∂2q
∂θ2

(θ∗) < 0 and the continuity of ∂2q
∂θ2

(θ)

in the domain
[(

θ∗

1 − σ , θ∗

1 + σ
)
×

(
θ∗

2 − σ , θ∗

2 + σ
)]

indicates
hat there always exists the deviation ∆ to let the average from
∂2q
∂θ2

(θ∗) to ∂2q
∂θ2

(θ∗
+ ∆) is negative definite. Thus,

1
0 [ ∆1 ∆2 ] ·

⎡⎣ ∂2q
∂θ21

(θ∗
+ξ∆) ∂2q

∂θ1∂θ2
(θ∗

+ξ∆)

∗
∂2q
∂θ22

(θ∗
+ξ∆)

⎤⎦ ·
[

∆1
∆2

]
dξ

≤ [ ∆1 ∆2 ] [−µ(σ ) · I]
[

∆1
∆2

]
= −µ(σ ) · |∆|

2

(52)

hen, (44) holds.
To make θ (t) → θ∗, the on-line estimate θ̂ (t) is introduced

and the estimation error θ̃ (t) is defined below,

θ̃ (t) = θ̂ (t) − θ∗ (53)

The gradient-based ES algorithm shown in Fig. 3 is employed as
follows:

θ (t) = θ̂ (t) + S(t)
˙̂
θ (t) = K · M(t) · y(t)

(54)

where K =
[
k
k

]
is a diagonal matrix of the adaptation gain

whose sign is opposite to the sign of the Hessian matrix H in (43),

S(t) = a
[

sin(ω1t)
sin(ω2t)

]
is the additive perturbation, M(t) =

2
a

[
sin(ω1t)
sin(ω2t)

]
is the multiplicative demodulation. The condition ω ̸= ω and ω1
1 2 ω2
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s rational is requested. The initial value satisfies
⏐⏐⏐θ̂ (0) − θ∗

⏐⏐⏐ <

0, where σ0 < σ is a known constant.
We consider Taylor expansion of the map (42) such that

(θ (t)) = q
(
θ∗

+ θ̃ (t) + S(t)
)

= q
(
θ∗

+ θ̃ (t)
)
+

∂q
∂θ

(
θ∗

+ θ̃ (t)
)
S(t)

+
1
2S

T (t)H(t)S(t)

(55)

here H(t) =
∂2q
∂θ2

(
θ∗

+ θ̃ (t) + ξ (t)S(t)
)
and ξ (t) ∈ (0, 1).

Substituting (55) into the 2nd equation of (54), and utilizing
the notation S0(t) =

[
sin(ω1t)
sin(ω2t)

]
, S(t) = aS0(t), M(t) =

2
a S0(t), we

rrive at the dynamics of the estimation error of (53) such that

˙̃ (t) =
2k
a S0(t)q

(
θ∗

+ θ̃ (t)
)
+ kaS0(t)ST0 (t)H(t)S0(t)

+2kS0(t) ∂q
∂θ

(
θ∗

+ θ̃ (t)
)
S0(t)

(56)

or the last term on the right-hand side of (56), we have S0(t) ∂q
∂θ

θ∗
+ θ̃ (t)

)
S0(t) = S0(t)ST0 (t)

∂q
∂θ

T (
θ∗

+ θ̃ (t)
)
, and

2S0(t)ST0 (t) =

[
2 sin2(ω1t) 2 sin(ω1t) sin(ω2t)

2 sin(ω1t) sin(ω2t) 2 sin2(ω2t)

]
= I + L0

(57)

where I is the unit matrix and

L0(t) =

[
− cos(2ω1t) 2 sin(ω1t) sin(ω2t)

2 sin(ω1t) sin(ω2t) − cos(2ω2t)

]
(58)

Thus, (56) becomes

˙̃
θ (t) =

2k
a S0(t)q

(
θ∗

+ θ̃ (t)
)
+ kaS0(t)ST0 (t)H(t)S0(t)

+k ∂q
∂θ

T (
θ∗

+ θ̃ (t)
)
+ kL0(t) ∂q

∂θ

T (
θ∗

+ θ̃ (t)
) (59)

Note that the Taylor remainder from (55) H(t) =
∂2q
∂θ2(

θ∗
+ θ̃ (t) + aξ (t)S0(t)

)
is close to H =

∂2q
∂θ2

(θ∗) if both θ̃ (t) and
a are small, so that supt≥0 |H(t) − H| ≪ supt≥0 |H(t)|. Hence, we
define

F(t) =
2
a S0(t)q

(
θ∗

+ θ̃ (t)
)
+ L0(t) ∂q

∂θ

T (
θ∗

+ θ̃ (t)
)

+aS0(t)ST0 (t)HS0(t)
R(t) = S0(t)ST0 (t) (H(t) − H) S0(t)

(60)

and (59) takes the form of

˙̃
θ (t) = k ∂q

∂θ

T (
θ∗

+ θ̃ (t)
)
+ kF(t) + kaR(t), t ≥ 0 (61)

Set

ω1 =
2π l1

ε
, ω2 =

2π l2
ε

(62)

here l1 ̸= l2 > 0 are integers.
Apply the time-delay approach to F(t), we have

1
ε

∫ t
t−ε

F(τ )dτ =
2
aε

∫ t
t−ε

S0(τ )q
(
θ∗

+ θ̃ (τ )
)
dτ

+
1
ε

∫ t
t−ε

L0(τ ) ∂q
∂θ

T (
θ∗

+ θ̃ (τ )
)
dτ

(63)

where we use a
ε

∫ t
t−ε

S0(τ )ST0 (τ )HS0(τ )dτ = 0.
Considering the 1st term on the right-hand side of (63), we get

2
aε

∫ t
t−ε

S0(τ )q
(
θ∗

+ θ̃ (τ )
)
dτ

−
2
aε

∫ t
t−ε

S0(τ )
[
q
(
θ∗

+ θ̃ (t)
)
− q

(
θ∗

+ θ̃ (τ )
)]

dτ

= −
2
aε

∫ t
t−ε

S0(τ )
∫ t

τ

∂q
∂θ

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

(64)

where we employ
∫ t S (τ )q

(
θ∗

+ θ̃ (t)
)
dτ = 0.
t−ε 0 l

7

Fig. 4. Domains defined by (72) and (77). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Considering the 2nd term on the right-hand side of (63), we
have
1
ε

∫ t
t−ε

L0(τ ) ∂q
∂θ

T (
θ∗

+ θ̃ (τ )
)
dτ

= −
1
ε

∫ t
t−ε

L0(τ )
[

∂q
∂θ

T (
θ∗

+ θ̃ (t)
)
−

∂q
∂θ

T (
θ∗

+ θ̃ (τ )
)]

dτ

= −
1
ε

∫ t
t−ε

L0(τ )
∫ t

τ

∂2q
∂θ2

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

(65)

here we employ
∫ t
t−ε

L0(τ ) ∂q
∂θ

T (
θ∗

+ θ̃ (t)
)
dτ = 0.

Now, we define

G(t) =
1
ε

∫ t
t−ε

(τ − t + ε)F(τ )dτ (66)

nd employ the relation

d
dt

[
θ̃ (t) − kG(t)

]
=

˙̃
θ (t) − kF(t) +

k
ε

∫ t
t−ε

F(τ )dτ (67)

nd substitute (64)–(65) into (63), the closed-loop system is
erived as
d
dt

[
θ̃ (t) − kG(t)

]
= k ∂q

∂θ

T (
θ∗

+ θ̃ (t)
)

−
2k
a Y1(t) − kY2(t) + kaR(t), t ≥ ε

(68)

here

1(t) =
1
ε

∫ t
t−ε

∫ t
τ
S0(τ ) ∂q

∂θ

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

Y2(t) =
1
ε

∫ t
t−ε

∫ t
τ
L0(τ ) ∂2q

∂θ2

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

(69)

enoting

(t) = θ̃ (t) − kG(t) (70)

the system (68) becomes

ż(t) = k ∂q
∂θ

T
(θ∗

+ z(t) + kG(t))

−
2k
a Y1(t) − kY2(t) + kaR(t), t ≥ ε

(71)

In parallel with (13) of the scalar case, under σ defined in
ssumption 3, the overall bound for the estimation error in the
ector case is supposed to satisfy

θ̃ (t)
⏐⏐ < σ, ∀t ≥ 0 (72)

he LMI conditions (75) in Theorem 2 ensure (72).
As revealed in Fig. 4, the overall bound given by (72) (the green

rea in the picture) is distinct from the ultimate bound of the
stimation error defined by (77) (the red area in the picture).
he overall bound given by (72) represents the range in which
S can be conducted. It means that every trajectory of ES closed-
oop system starting in the initial domain

⏐⏐θ̃ (0)⏐⏐ ≤ σ < σ
0
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emains in the domain and approaches the extremum as time
rows (see the curves in blue, yellow and purple inside the green
rea), whereas trajectories starting outside the initial domain
ay diverge (see the brown one outside the green area). This

s consistent with the concepts of region of attraction and local
tability of nonlinear systems (see Khalil (2002, Chapter 4.1)). The
ltimate bound of the estimation error given by (77), describes
ow close the real-time estimate converges to the true extremum
s t → ∞. It is seen from (77) the error ultimate bound depends

upon the designing parameters ε and a, and could be tuned to be
ufficiently small when ε and a are chosen to be small. This result
s in line with the literature (Ariyur & Krstic, 2003). The area of
77) is embraced in the area of (72). In Fig. 4, the extremum to
e sought is assumed to be the origin without loss of generality,
nd the ES controller is brought in to render the initial estimate
hich is located in the green area converging to the target red
rea. The latter is typically much smaller.
Furthermore, by defining S̄0 = supt≥0 |S0(t)|, L̄0 = supt≥0

L0(t)|, under (45), we get the upper bounds for (60) and (61) such
hat

F(t)| ≤
2
a

⏐⏐S0(t)q (
θ∗

+ θ̃ (t)
)⏐⏐

+

⏐⏐⏐L0(t) ∂q
∂θ

T (
θ∗

+ θ̃ (t)
)⏐⏐⏐ + a

⏐⏐S0(t)ST0 (t)HS0(t)⏐⏐
< 2

a S̄0q0(σ ) + L̄0q1(σ ) + aS̄30q2(σ ) ≜ ∆F

R(t)| ≤
⏐⏐S0(t)ST0 (t) (H(t) − H) S0(t)

⏐⏐
S̄30L

⏐⏐θ̃ (t) + aξ (t)S0(t)
⏐⏐ < S̄30L

(
σ + aS̄0

)
≜ ∆R

˙̃
θ (t)

⏐⏐⏐ ≤ k
⏐⏐⏐ ∂q
∂θ

T (
θ∗

+ θ̃ (t)
)⏐⏐⏐ + k |F(t)| + ka |R(t)|

< kq1(σ ) + k∆F + ka∆R ≜ ∆θ

(73)

Correspondingly, from (66) and (69), we have

|G(t)| =
1
ε

⏐⏐⏐∫ t
t−ε

(τ − t + ε)F(τ )dτ
⏐⏐⏐

1
ε

∫ t
t−ε

(τ − t + ε)dτ · sup |F(τ )| < ∆F
2 ε

|Y1(t)| =
1
ε

⏐⏐⏐∫ t
t−ε

∫ t
τ
S0(τ ) ∂q

∂θ

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

⏐⏐⏐
< 1

ε

∫ t
t−ε

∫ t
τ
dsdτ · S̄0q1(σ )∆θ =

S̄0q1(σ )∆θ

2 ε

Y2(t)| =
1
ε

⏐⏐⏐∫ t
t−ε

∫ t
τ
L0(τ ) ∂2q

∂θ2

(
θ∗

+ θ̃ (s)
) ˙̃
θ (s)dsdτ

⏐⏐⏐
< 1

ε

∫ t
t−ε

∫ t
τ
dsdτ · L̄0q2(σ )∆θ =

L̄0q2(σ )∆θ

2 ε

(74)

Theorem 2. Under Assumptions 3–4 with a given σ > 0, consider
the closed-loop system consisting of the multi-variable map (42) and
he ES controller (54), as well as the initial condition

⏐⏐θ̃ (0)⏐⏐ ≤ σ0 <

. Given tuning parameters σ0, k, a, δ, ε∗ > 0 where a and ε∗ are
small, let decision variables λ1, λ2, λ3, λ4, λ5 > 0 satisfy the LMIs:

Ω1 =⎡⎢⎢⎢⎢⎣
−2(kµ(σ )−δ)I 0 −

2k
a I −kI kI kaI

∗ −

(
λ1
ε∗

−λ5k2q22(σ )
)
I 0 0 0 0

∗ ∗ −
λ2
ε∗

I 0 0 0

∗ ∗ ∗ −
λ3
ε∗

I 0 0
∗ ∗ ∗ ∗ −λ5I 0
∗ ∗ ∗ ∗ ∗ −λ4aI

⎤⎥⎥⎥⎥⎦
< 0,
Ω2 = σ0 + (∆θ + k∆F ) ε∗ < σ,

Ω3 =

(
λ1∆2

F+

(
λ2 S̄20q

2
1(σ )+λ3 L̄20q

2
2(σ )

)
∆2

θ

)
ε∗

+4λ4a∆2
R

8δ( k∆F ∗
)2

(75)
σ − 2 ε

8

Table 1
Real: q0 = 3.8610, q1 = 6.2900, q2 = 5.4000, L = 2.0.

ε δ σ0 σ µ(σ ) UB

Th1 0.0001 0.000248 1.6 1.7 0.3 0.4287
Prop1 0.0001 – 1.6 1.7 0.3 0.2719

Table 2
Estimated: q0 = 5.2297, q1 = 7.4100, q2 = 5.8000, L = 2.05.

ε δ σ0 σ µ(σ ) UB

Th1 0.0001 0.000264 1.6 1.7 0.3 0.5897
Prop1 0.0001 – 1.6 1.7 0.3 0.3026

Then, ∀ε ∈ (0, ε∗], the estimation error satisfies⏐⏐θ̃ (t)⏐⏐ ≤
⏐⏐θ̃ (0)⏐⏐ + ∆θ t < σ, t ∈ [0, ε]

θ̃ (t)
⏐⏐ ≤

[ (⏐⏐θ̃ (ε)⏐⏐ +
k∆F
2 ε

)2
e−2δ(t−ε)

+
(
1 − e−2δ(t−ε)

)
×

(
λ1∆2

F+λ2 S̄20q
2
1(σ )∆2

θ
+λ3 L̄20q

2
2(σ )∆2

θ

)
ε+4λ4a∆2

R
8δ

] 1
2

+
k∆F
2 ε < σ, t ∈ [ε, ∞)

(76)

nd is exponentially attracted to the ball

=

{
θ̃ ∈ R2

:
⏐⏐θ̃ ⏐⏐ ≤

k∆F
2 ε

+

√ (
λ1∆2

F+λ2 S̄20q
2
1(σ )∆2

θ
+λ3 L̄20q

2
2(σ )∆2

θ

)
ε+4λ4a∆2

R
8δ

} (77)

which is adjustable by the tuning parameters ε and a. Moreover,
LMIs (75) are always feasible for small enough ε∗ and a.

See the Appendix for proof.

4. Examples

4.1. Scalar case

Given the nonlinear scalar map (7)

q(θ ) =
1
3θ

3
− θ (78)

ith the ES controller (11) with k = 0.001, a = 0.02. The
upper bounds in (6) are available. We perform the simulations
with both the LMIs (31) in Theorem 1 and the inequalities (40)
in Proposition 1. We provide two groups of data: For a given σ ,
the ‘‘real’’ bounds refer to the exact bounds calculated by (6) as
if we know the map exactly, whereas the ‘‘estimated’’ bounds
refer to the approximate bounds which are somewhat larger
than the real bounds. The solutions for both real bounds and
estimated bounds via Theorem 1 and Proposition 1 are shown in
Tables 1–2, respectively, where ‘‘UB’’ refers to the ultimate bound
limt→∞ sup

⏐⏐θ̃ (t)⏐⏐. Note that the tuning parameters specified by
designers are the controller gain k, the dither period ε and the
dither amplitude a. In (31), λ1, λ2, λ3, λ4 and λ5 are just decision
ariables of LMIs, whose calculations can be left up to computers,
f the designing parameters are given. We have tuned k and a to
aximize ε.
It is seen from Table 1 that if supt≥0 |H(t) − H| = L(σ + a) =

.44 in (29) is replaced by supt≥0 |H(t)| = q2 = 5.4, it results
n ε = 0.000015 and a = 0.01 which is more conservative.
he same conclusion holds for Table 2, verifying the content in
emark 3.
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Table 3
Real: q0 = 1.1668, q1 = 1.8857, q2 = 2, L = 0.7778.

ε δ σ0 σ µ(σ ) UB

Th2 0.01 0.0055 0.9 1.0 1.0 0.4182
Th2 0.03 0.0032 0.9 1.0 1.0 0.6072

Table 4
Estimated: q0 = 1.3, q1 = 2, q2 = 2.1, L = 1.

ε δ σ0 σ µ(σ ) UB

Th2 0.01 0.0052 0.9 1.0 1.0 0.5165
Th2 0.03 0.0042 0.9 1.0 1.0 0.7138

4.2. Vector case

We consider a nonlinear function with two variables

(x, y) = −
1
2 (x

2
+ y2) −

1
12x

2y2 −
1
24 (x

4
+ y4) (79)

hich has a maximum at (0, 0) as shown in Fig. 5. We employ
the ES controller (54) with parameters: k = 0.008, a = 0.1,
and ω1 = ω, ω2 = 2ω. The LMI solutions under both the real
and estimated bounds of q0, q1, q2, L in (45) for a given σ are
shown in Tables 3–4, respectively. The LMI solution results in all
the tables are obtained by optimizing with the ‘‘fmincon’’ function
in Matlab. Namely, the decision variables λ1, λ2, λ3, λ4, λ5 in
heorems 1 and 2 are optimized by the ‘‘fmincon’’ function to
chieve a smaller ultimate bound for the estimation error. Similar
o Remark 2 in Yang and Fridman (2023), we can further improve
he results by setting the ultimate bound that we got each time as
he new σ , and perform the simulation in an iterative way so that
much smaller ultimate bound is attainable. For the simulation
nder the initial condition x(0) = 1, y(0) = −1, and ε = 0.03,
he ES trajectory is shown in Fig. 6.

In the existing literature (Yang & Fridman, 2023; Zhu & Frid-
an, 2022; Zhu et al., 2023), the constant disturbances were
llowed to be added to the map of the quadratic form. However,
ere the 4th-power nonlinear term −

1
12x

2y2 −
1
24 (x

4
+ y4) in

79) cannot be handled as a bounded disturbance as it is state-
ependent and time-varying. To be specific, the example (79) is
ewritten as

(x(t), y(t)) = −
1
2 (x

2(t) + y2(t)) + ∆(t) (80)

here
(t) = ∆(x(t), y(t))

= −
1
12x

2(t)y2(t) −
1
24 (x

4(t) + y4(t))
(81)

he map (80) consists of a standard quadratic dominant part and
n additive time-varying disturbance which is state-dependent.
etting θ = [x, y]T = [x̂ + a sin(ω1t), ŷ + a sin(ω2t)]T , applying

the ES in Fig. 3, we arrive at
˙̃
θ (t) =

2k
a

[
sin(ω1t)
sin(ω2t)

]
·
[
−

1
2 (x

2(t) + y2(t)) + ∆(t)
]

= −kθ̃ (t) − kL0(t)θ̃ (t) −
k
aS0(t)θ̃

T (t)θ̃ (t)

−kaS0(t)ST0 (t)S0(t) +
2k
a S0(t)∆(t)

(82)

The application of the averaging or the time-delay approach to
the last term 2k

a S0(t)∆(t) is not available, as the calculation of the
ime-derivative of ∆(t) is complicated.

. Conclusion

This paper extends the time-delay approach to ES of general
onlinear static maps which are not necessarily requested to be
f a quadratic form. Under the premise of a prior knowledge
bout the upper bounds of the nonlinear map and its gradient
 (

9

Fig. 5. The shape of the two-variable map.

Fig. 6. The trajectory of the ES algorithm.

and Hessian, the time-delay approach builds a precisely explicit
relation between the tuning parameters and the ultimate bound
of the estimation error, which suggests a quantitative guideline
for the choice of tuning parameters. In the future, expanding the
time-delay approach to encompass dynamical maps with low-
and high-pass filters in the ES loop is worthy of investigation.
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Appendix. Proof of Theorem 2

We first concentrate on the system (71) and define

Φ(t) =
∂q
∂θ

T (
θ∗

+ z(t) + kG(t)
)
−

∂q
∂θ

T (
θ∗

+ z(t)
)

(A.1)

By using differential mean value theorem, and under (45) and
(74), we obtain

|Φ(t)| ≤

⏐⏐⏐ ∂2q
∂θ2

(θ∗
+ z(t) + ζkG(t))

⏐⏐⏐ |kG(t)| < q2(σ ) k∆F
2 ε (A.2)

here ζ ∈ (0, 1). Refer to Lemma 3.1 on Pages 89–90 of Khalil
2002).
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Then the system (71) is expressed as

ż(t) = k ∂q
∂θ

T
(θ∗

+ z(t)) + kΦ(t)

−
2k
a Y1(t) − kY2(t) + kaR(t), t ≥ ε

(A.3)

The Lyapunov candidate is selected as

V (t) = zT (t)z(t), (A.4)

and its derivative is calculated as

V̇ (t) + 2δV (t) = 2kzT (t) ∂q
∂θ

T
(θ∗

+ z(t))
+2δzT (t)z(t) + 2kzT (t)Φ(t)

−
4k
a zT (t)Y1(t) − 2kzT (t)Y2(t) + 2kazT (t)R(t)

(A.5)

e first assume (and then prove) that (72) holds, i.e.
⏐⏐θ̃ (t)⏐⏐ < σ

or all t ≥ 0.
Under (44) in Assumption 3, we have

kzT (t) ∂q
∂θ

T
(θ∗

+ z(t)) ≤ −2kµ(σ )zT (t)z(t) (A.6)

Then, for any t ≥ ε, we employ S-procedure (see Fridman (2014,
Chapter 3.2.3)) with the positive parameters λ1, λ2, λ3, λ4, λ5 to
rrive at
˙ (t) + 2δV (t) −

λ1
ε
GT (t)G(t)

−
λ2
ε
Y T
1 (t)Y1(t) −

λ3
ε
Y T
2 (t)Y2(t) − λ4aRT (t)R(t)

+λ5
(
k2q22(σ )GT (t)G(t) − ΦT (t)Φ(t)

)
≤ ηT (t)Ω1η(t) < 0

(A.7)

where η(t) = col {z(t),G(t), Y1(t), Y2(t), Φ(t),R(t)}, and Ω1 < 0
given in (75) guarantees (A.7) holds.

Note that λ5
(
k2q22(σ )GT (t)G(t) − ΦT (t)Φ(t)

)
> 0 from (A.2).

Combining (45) with (74), we get

V̇ (t) + 2δV (t) <
λ1
ε
GT (t)G(t)

+
λ2
ε
Y T
1 (t)Y1(t) +

λ3
ε
Y T
2 (t)Y2(t) + λ4aRT (t)R(t)

<
λ1∆2

F
4 ε +

λ2 S̄20q
2
1(σ )∆2

θ

4 ε +
λ3 L̄20q

2
2(σ )∆2

θ

4 ε + λ4a∆2
R

(A.8)

pplying the comparison principle to (A.8), we get

(t) ≤ V (ε)e−2δ(t−ε)
+

(
1 − e−2δ(t−ε)

)
×

(
λ1∆2

F+λ2 S̄20q
2
1(σ )∆2

θ
+λ3 L̄20q

2
2(σ )∆2

θ

)
ε+4λ4a∆2

R
8δ

U(t), t ≥ ε

(A.9)

From (73), we conclude that

θ̃ (t)
⏐⏐ =

⏐⏐⏐θ̃ (0) +
∫ t
0

˙̃
θ (τ )dτ

⏐⏐⏐ <
⏐⏐θ̃ (0)⏐⏐ + ∆θ t

σ0 + ∆θε, t ∈ [0, ε]
(A.10)

he above equation corresponds to the 1st formula in (76) and is
nsured by Ω2 < σ in (75).
Further, from (70), we have

θ̃ (t)
⏐⏐ ≤ |z(t)| + k |G(t)| =

√
V (t) + k |G(t)|

√
U(t) +

k∆F
2 ε, t ≥ ε

(A.11)

hich corresponds to the 2nd formula in (76).
Note that U(t) in (A.9) takes the form of U(t) = αe−2δ(t−ε)

+β

where α > 0 and β > 0 are constants, hence U(t) is mono-
tonically decreasing. From (A.11), to make sure that

⏐⏐θ̃ (t)⏐⏐ <
√
U(t) +

k∆F
2 ε < σ for all t ∈ [ε, ∞), which is equivalent to

he 2nd equation in (76), we need to ensure the condition at the
wo boundaries such that⏐⏐θ̃ (ε)⏐⏐ <

√
U(ε) +

k∆F
2 ε < σ,⏐⏐ ˜ ⏐⏐ √ k∆F

(A.12)

limt→∞ θ (t) < limt→∞ U(t) + 2 ε < σ

10
From (A.4), we obtain

U(ε) = V (ε) = |z(ε)|2 ≤
(⏐⏐θ̃ (ε)⏐⏐ + k |G(ε)|

)2
<

(
σ0 + ε∆θ +

k∆F
2 ε

)2 (A.13)

ubstituting (A.13) into the 1st row in (A.12), the 1st formula of
A.12) is guaranteed by Ω2 < σ in (75), whereas the 2nd formula
of (A.12) is guaranteed by Ω3 <

(
σ −

k∆F
2 ε∗

)2
in (75).

We prove next that LMI conditions (75) guarantee that (72)
holds via an argument of contradiction (Zhu & Fridman, 2022,
Appendix, Page12). Consider first t ∈ [0, ε]. Since

⏐⏐θ̃ (0)⏐⏐ ≤ σ0 <

σ and θ̃ (t) is continuous in time, (72) holds for small enough
t > 0. We assume by contradiction that for some t ∈ (0, ε] the
formula (72) does not hold. Namely, there exists the smallest time
instance t∗ ∈ (0, ε] such that

⏐⏐θ̃ (t∗)⏐⏐ = σ and
⏐⏐θ̃ (t)⏐⏐ < σ when

t ∈ [0, t∗). Thus
⏐⏐θ̃ (t)⏐⏐ ≤ σ holds for all t ∈ [0, t∗] and this

leads to the inequality (A.10) in its non-strict version such that⏐⏐θ̃ (t)⏐⏐ ≤
⏐⏐θ̃ (0)⏐⏐ + t∆θ ≤ σ0 + ε∗∆θ for 0 ≤ t ≤ t∗ ≤ ε ≤ ε∗.

Furthermore, the feasibility of Φ2 in (75) ensures that
⏐⏐θ̃ (t∗)⏐⏐ ≤

σ0 + ε∗∆θ < σ . This contradicts to the definition of t∗ such that⏐⏐θ̃ (t∗)⏐⏐ = σ . Hence
⏐⏐θ̃ (t)⏐⏐ < σ for t ∈ [0, ε]. Then, we prove (72)

for t ≥ ε. Since the 1st inequality of (76) derived from (A.10)
is strict and holds for t = ε, it infers (72) for sufficiently small
t > ε due to continuity of θ̃ (t). We assume by contradiction that
at some t > ε the bound (72) does not hold. In other words,
there exists the smallest time instance t∗ ∈ (ε, ∞) such that⏐⏐θ̃ (t∗)⏐⏐ = σ and

⏐⏐θ̃ (t)⏐⏐ < σ when t ∈ [ε, t∗). Thus
⏐⏐θ̃ (t)⏐⏐ ≤ σ

holds for all t ∈ [ε, t∗] and this leads to (A.11) and (A.13) in its
non-strict version for ε ≤ t ≤ t∗. Moreover, the feasibility of
Φ2, Φ3 in (75) ensures

⏐⏐θ̃ (t)⏐⏐ < σ in the 2nd equality of (76) for
any t ∈ [ε, t∗]. This contradicts to the definition of t∗ such that⏐⏐θ̃ (t∗)⏐⏐ = σ . Hence

⏐⏐θ̃ (t)⏐⏐ < σ for t ≥ ε.
Finally, we verify the feasibility of (75) for fixed σ and small

enough ε∗ and a. Note that ∆F , ∆θ are of the order of O
( 1
a

)
.

hoosing λ1 = λ2 = λ3 = λ4 = 1, clearly Ω2 < 0 and Ω3 < 0
n (75) hold for small enough ε∗ and a = (ε∗)

1
4 . Next, we apply

Schur complement to Ω1 of (75), then Ω1 < 0 is equivalent to[
−2(kµ(σ )−δ)I 0

∗ −

(
λ1
ε∗

−λ5k2q22(σ )
)
I

]
+

ε∗

λ2a2
[

−2kI
0

]
[ −2kI 0 ]

+
ε∗

λ3

[
−kI
0

]
[ −kI 0 ] +

a
λ4

[
kI
0

]
[ kI 0 ] +

1
λ5

[
kI
0

]
[ kI 0 ] < 0

Choosing λ1 = λ2 = λ3 = λ4 = 1, λ5 =
1

√
ε∗
, and a = (ε∗)

1
4 , it is

evident that the latter inequality holds for small enough ε∗.
Theorem 2 is proved.
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