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Sampled-data finite-dimensional boundary control
of 2D semilinear parabolic stochastic PDEs
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Abstract—This paper addresses the sampled-data boundary
stabilization of 2D semilinear parabolic stochastic PDEs with
globally Lipschitz nonlinearities. We consider Dirichlet actuation
and design a finite-dimensional state-feedback controller with
the shape functions in the form of eigenfunctions corresponding
to the first N comparatively unstable eigenvalues. We extend
the trigonometric change of variables to the 2D case and
further improve it that leads to a dynamic extension with the
corresponding proportional-integral controller, where sampled-
data control is implemented via a generalized hold device. By
employing the corresponding Itô formulas for stochastic ODEs
and PDEs, respectively, and suggesting a non-trivial stochastic
extension of the descriptor method, we derive linear matrix
inequalities (LMIs) for finding the controller dimension and gain
that guarantees the global mean-square L2 exponential stability
for the full-order closed-loop system. A numerical example
demonstrates the efficiency and advantage of our method.

Index Terms—2D PDEs, semilinear stochastic heat equation,
sampled-data control, boundary control.

I. INTRODUCTION

Boundary control of PDEs is attractive from the theo-
retical and practical point of view. It can be designed by
the backstepping approach [1] or modal decomposition [2]–
[7]. Boundary control of 1D semilinear heat equation was
suggested in [8] by using a modal decomposition method via
dynamic extension. These results were improved in [9] via
direct Lyapunov approach. In the present paper we will extend
the results in [8], [9] to 2D semilinear heat equations and
further improve them.

Sampled-data boundary finite-dimensional controllers for
1D parabolic PDEs, implemented by zero-order hold de-
vices, were suggested in [10], [11] for state-feedback control,
and in [12], [13] for observer-based control. For the finite-
dimensional boundary control under point measurement of 1D
linear heat equations, sampled-data control via a generalized
hold device was suggested in [6]. Event-triggered boundary
control of 1D heat equations was studied in [14], [15] via
backstepping design. However, all these results were confined
to 1D parabolic deterministic PDEs.

Control of stochastic PDEs has gained significant attention
due to its broad applications in engineering and finance.
In [16], finite-dimensional boundary control of 1D linear
stochastic PDEs was studied, where constructive conditions
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for finding the controller dimension were not provided. In
[17], we suggested a constructive finite-dimensional state- and
output-feedback boundary controllers for 1D linear parabolic
stochastic PDEs, extending results of [5] to the stochastic case.
Inspired by [6], [13], we presented finite-dimensional sampled-
data observer-based boundary controller [18] and sampled-data
sub-predictors [19] for 1D linear and semilinear stochastic heat
equations. However, these results remain limited to 1D case.

Boundary state-feedback stabilization of ND linear
parabolic PDEs was studied in [20] via backstepping method
and in [21], [22] via modal decomposition approach. Note that
only specific classes of semilinear PDEs have been addressed
through the backstepping method and the feedback design
in [21], [22] is not applicable for semilinear case due to
the spillover behavior caused by the nonlinearity (see [9]).
In [23], [24], the finite-dimensional boundary regional state-
feedback stabilization for ND semilinear parabolic PDEs was
studied via a fixed point argument. Following [24], finite-
dimensional observer-based boundary control was studied in
[25] for 2D and 3D linear parabolic PDEs. In our recent paper
[26], sampled-data and delayed finite-dimensional observer-
based design for 2D linear deterministic heat equation was
studied under Neumann actuation, where as in 1D case (see
[27]) dynamic extension was not needed. Dirichlet bound-
ary control and its sampled-data implementation for high-
dimensional semilinear parabolic deterministic and stochastic
PDEs remains an open problem. The main challenges lie
in the following: (i) finding an efficient dynamic extension
in the presence of multiple eigenvalues; (ii) managing with
complicated stability analysis due to slower convergence of
the eigenvalues to infinity; (iii) providing an efficient controller
design in the presence of multiplicative noise and delays.

In this paper, we study the sampled-data finite-dimensional
state-feedback global stabilization of 2D semilinear parabolic
stochastic PDEs under Dirichlet actuation, where the non-
linearities satisfy globally Lipschitz condition and network-
induced transmission delays are considered. To address the
controllability issues caused by the multiple eigenvalues, we
design the boundary controller with the shape functions in the
form of eigenfunctions corresponding to the first N eigenval-
ues. Such shape functions were previously considered in [21],
[23], [24]. We construct a Lyapunov functional that depends
on both the deterministic and stochastic parts of the finite-
dimensional part of the closed-loop system. By employing the
corresponding Itô formulas for stochastic ODEs and PDEs,
respectively, and using the descriptor method (a stochastic
extension of [28, Sec. 5]), we provide LMI conditions for
finding the controller dimension and gain, as well as upper

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3514520

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on December 11,2024 at 15:37:42 UTC from IEEE Xplore.  Restrictions apply. 



2

bounds on sampling intervals and Lipschitz constants that
preserve the mean-square L2 exponential stability. The main
contribution of this paper is listed as follows:

• For the first time, we present constructive results for the
control of 2D semilinear heat equation under the Dirichlet
actuation with efficient quantitative bounds on the number
of modes used in the controller, whereas controller gain
is found from the design LMIs.

• We efficiently extend the change of variables and dynamic
extension from the 1D case in [8], [9] to the 2D case
and further improve it by suggesting an additional tuning
parameter that always enlarges the Lipschitz bounds for
2D and 1D PDEs both in deterministic and stochastic
cases - achieving an increase of over 50% in some cases
in our example.

• Differently from [18] and [26] where controller gain is
designed from the corresponding deterministic case and
non-delayed case, respectively, we propose a stochastic
delayed extension of the descriptor method that essen-
tially enlarges the sampling intervals and transmission
delays - exceeding an increase of over 100% in our
example. Moreover, sampled-data boundary control under
Dirichlet actuation is for the first time considered in the
presence of additional variable delay.

Preliminary results on continuous-time stabilization were
reported in ECC 2024 [29].

Notations: Let (Ω,F ,P) be a complete probability space
with a filtration {Ft}t≥0 of increasing sub σ-fields of F and let
E{·} be the expectation operator. Denote by W(t) the 1D stan-
dard Brownian motion defined on (Ω,F ,P). The Euclidean
norm is denoted by | · |. For P ∈ Rn×n, P > 0 means that
P is positive definite with symmetric elements denoted by ∗.
For 0 < P ∈ Rn×n and x ∈ Rn, we write |x|2P = xTPx.
Let N be the set of positive integers and Z+ be the set of
nonnegative integers. For any bounded domain O0 ⊂ Rn
(n = 1, 2), denote by L2(O0) the space of square integrable
functions with inner product ⟨f, g⟩O0

=
∫
O0
f(x)g(x)dx

and induced norm ∥f∥2L2(O0)
= ⟨f, f⟩O0

. H1(O0) is the
Sobolev space of functions f : O0 −→ R with a square
integrable weak derivative. The norm defined in H1(O0) is
∥f∥2H1(O0)

= ∥f∥2L2(O0)
+∥∇f∥2L2(O0)

, where ∇f represents
the gradient of f and ∥∇f∥2L2(O0)

=
∫
O0

|∇f(x)|2dx. Let ∂
∂n

be the normal derivative.

II. PROBLEM DESCRIPTION

A. System under consideration

Let O ⊂ R2 be a bounded open connected set. We assume
that either the boundary ∂O = Γ1 ∪ Γ2 (Γ1 ∩ Γ2) is of class
C2 or O is a rectangular domain. Consider the following 2D
semilinear stochastic heat equation:

dz(x, t) = [∆z(x, t) + qz(x, t) + f(z(x, t))]dt
+g(z(x, t))dW(t), x ∈ O,

z(x, t) = 0, x ∈ Γ1, z(x, t) = u(x, t), x ∈ Γ2,
(1)

where ∆ is the usual Laplacian, q ∈ R is the reaction coeffi-
cient, u(x, t) is the control input to be designed, f, g : R → R
are globally Lipschitz functions satisfying

f(0) = 0, |f(z1)− f(z2)| ≤ σf |z1 − z2|,
g(0) = 0, |g(z1)− g(z2)| ≤ σg|z1 − z2|,∀z1, z2 ∈ R, (2)

for some σf , σg > 0. Here σg defines the upper bound of
noise intensity.

Let
Aϕ = −∆ϕ, D(A) = {ϕ|ϕ ∈ H2(O) ∩H1

0},
H1

0 = {ϕ ∈ H1(O)|ϕ(x) = 0 for x ∈ ∂O}. (3)

It follows from [30, Proposition 3.2.12] that the eigenvalues
{λn}∞n=1 of A are real and we can repeat each eigenvalue
according to its finite multiplicity to get

λ1 < λ2 ≤ · · · ≤ λn ≤ . . . , limn→∞ λn = ∞. (4)

We denote the corresponding eigenfunctions as {ϕn}∞n=1. For
λn, we have the following estimate which will be used for the
asymptotic feasibility of LMIs:

Lemma 1: (see [31, Sec. 11.6]) For eigenvalues (4), we have
limn→∞

λn
n = 4π

|O| , where |O| is the area of O.
Remark 1: We assume that the eigenvalues and eigen-

functions are explicitly known. However, in many practical
applications, only approximate knowledge of the eigenfunc-
tion structure is available. Addressing unknown eigenvalues
and eigenfunctions through approximate estimation will be a
potential direction for future research.

Let δ > 0 be a desired decay rate and N ∈ N such that

−λn + q + δ +
√
2σf + σ2

g < 0, n > N, (5)

where N denotes the number of unstable modes and will be
determined by χn < 0, n > N in (45a) below. Our controller
will be designed by using N modes. For given λ ∈ {λn}Nn=1,
let mλ be the geometric multiplicity of λ and ϕ(1)λ , . . . , ϕ

(mλ)
λ

be the eigenfunctions corresponding to λ. We impose the
following assumption that is crucial for the controllability
of the finite-dimensional part of the closed-loop system (see
above (22)):

Assumption 1: Given λ ∈ {λn}Nn=1, let {∂ϕ
(i)
λ

∂n }mλi=1 be
linearly independent in L2(Γ2).

Remark 2: Assumption 1 always holds true for 1D case
(due to simple eigenvalues) and for rectangular domain O =
(0, a1)× (0, a2), a1, a2 > 0. Consider the boundary:

∂O = Γ1 ∪ Γ2, Γ2 = {(x1, 0), x1 ∈ (0, a1)}. (6)

Here the eigenvalues of A are given by

λm,k = π2[m
2

a21
+ k2

a22
], m, k ∈ N, (7)

whereas the corresponding eigenfunctions have the form

ϕm,k(x) =
2√
a1a2

sin(mπx1

a1
) sin(kπx2

a2
), x = (x1, x2). (8)

For any pair of multiple eigenvalues λm1,k1 = λm2,k2 , the
relation m1 ̸= m2 always implies k1 ̸= k2 (and vice
versa). Therefore, ∂ϕm1,k1

∂n and ∂ϕm2,k2

∂n are always linearly
independent in L2(Γ2). Note that Assumption 1 is much
weaker than the assumption (ii) in [23] (linear independence
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of {∂ϕn(x)∂n , x ∈ L2(Γ2)}Nn=1), which does not hold for square
domain when N ≥ 3 (see Remark 3.2 in [23]). Assumption
(ii) in [23] was removed in [24], [25] by slightly perturbing the
linear operator A, whereas constructive conditions for finding
the controller dimension were not provided.

Remark 3: In [26], the sampled-data and delayed observer-
based design for 2D linear heat equation was explored under
Neumann actuation, which is not applicable for Dirichlet
actuation (similar to the 1D case explained in [19, Remark
2]). In this paper, we manage with the Dirichlet actuation
via dynamic extension and the results can be directly ex-
tended to the Neumann actuation. In this scenario, we do not
need Assumption 1 since for general domain O and given
λ ∈ {λn}Nn=1, eigenvectors {ϕ(i)λ }mλi=1 are always linearly
independent in L2(Γ2) (see [21, Lemma 7.1]).

B. Change of variables

For given positive constants {µi}Ni=1 satisfying

µi ̸= λn, i ∈ {1, . . . , N}, n ∈ Z, µi = O(λi), (9)

consider functions ψi ∈ L2(O), i = 1, . . . , N , that satisfy

∆ψi(x) = −µiψi(x), x ∈ O,
ψi(x) = 0, x ∈ Γ1, ψi(x) = bi

∂ϕi(x)
∂n , x ∈ Γ2,

(10)

where bi ∈ R are chosen such that ∥ψi∥L2(O) = ρ. Here ρ > 0
is a tuning parameter. Such functions always exist [21]. Since
µi ̸= λn, by applying Green’s first identity, we find that

⟨ψi, ϕn⟩O = −bi
λn−µi ⟨

∂ϕi
∂n ,

∂ϕn
∂n ⟩Γ2

. (11)

Remark 4: For rectangular domain introduced in Remark
2, we take

ψm,k(x) =
2ρ√
a1a2

sin(mπx1

a2
) cos( (k−0.5)πx2

a2
),

µm,k = (mπa1 )2 + ( (k−0.5)π
a2

)2, bm,k = −ρa2
kπ ,

(12)

where m, k ∈ N. We reorder the eigenvalues (7) to form a
non-decreasing sequence {λn}∞n=1 satisfying (4) and denote
the corresponding eigenfunctions as {ϕn}∞n=1. Following the
corresponding relationship between (7) and (4), we reorder
{ψm,k}∞m,k=0, {µm,k}∞m,k=0, and {bm,k}∞m,k=0 as {ψi}∞i=1,
{µi}∞i=1, and {bi}∞i=1. We see that {µi}Ni=1 satisfy (9), {ψi}∞i=1

satisfy (10), and ∥ψi∥L2(O) = ρ, i ∈ Z+.
Remark 5: Functions ψi in (10) are the extension of the

1D functions considered in [8], [9] where ρ is fixed to 1√
2

.
In our example in Sec IV, we show that an appropriate
choice of ρ ∈ (0, 1√

2
) can lead to larger upper bounds on

the Lipschitz constants and sampling intervals. Moreover, the
tuning parameter ρ allows also to improve results in the 1D
case (see the conference version [29]).

We design the control input with the shape functions in the
form of eigenfunctions {ϕi}Ni=1:

u(x, t) =
∑N
i=1 bi

∂ϕi(x)
∂n ui(t), x ∈ Γ2, (13)

where ui(t), i = 1, . . . , N are to be designed later. Consider
the change of variables:

w(x, t) = z(x, t)− ψT(x)u(t),
ψ(x) = col{ψi(x)}Ni=1, u(t) = col{ui(t)}Ni=1.

(14)

Substituting (14) into (1) we obtain

dw(x, t) = [∆w(x, t) + qw(x, t) + ψT(x)Ξ0u(t)
+f(w(x, t) + ψT(x)u(t))]dt− ψT(x)du(t)
+g(w(x, t) + ψT(x)u(t))dW(t), x ∈ O,

w(x, t) = 0, x ∈ ∂O, w(x, 0) = z(x, 0),

(15)

where Ξ0 = diag{−µ1 + q, . . . ,−µN + q}.

C. Network-based controller design

As shown in Fig. 1, we consider network-based control
in the presence of communication delay from controller to
actuator. We denote by {sj}∞j=0 sampling instants on the
controller side with 0 = s0 < s1 < · · · < sj < . . . ,
limj→∞ sj = ∞, sj+1 − sj ≤ h, where h > 0 is the
maximum sampling interval. Denote by tj the updating time of
the actuator, and suppose that the updating signal at the instant
tj has experienced a controller-to-actuator transmission delay
ηj . Note that ηj ≥ 0 is varying at different instants tj and is
upper bounded by a known constant ηM > 0. Then we have
the updating time of actuator {tj}∞j=0 satisfying

tj = sj + ηj , 0 < tj+1 − tj ≤ h+ ηM =: τM .

Using the time-delay approach to sampled-data control (see
[28]), we introduce the following representation of delay:

τ(t) = t− tj + ηj , t ∈ [tj , tj+1), τ(t) ≤ τM . (16)

Henceforth the dependence of τ(t) on t will be suppressed to
shorten notations.

Plant

ControllerDelay η!
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e%% &'&& 𝐮 𝑡! +&
&&

&
e%% &'( d𝑠v(𝑡!)

Communication network

Fig. 1. Sampled-data control of a heat equation.

In (15), we treat u(t) as an additional state variable, which
is generated by a generalized hold device:

du(t) = [Ξ0u(t) + v(tj)]dt, t ∈ [tj , tj+1),
u(t) = 0, t ∈ [0, t0], u(tj) = limt→t−j

u(t), j ≥ 1, (17)

where the values {v(tj)}∞j=1 are control inputs to be deter-
mined. Given v(tj), u(t) is calculated as

u(t) = eΞ0(t−tj)u(tj) +
∫ t
tj
eΞ0(t−s)dsv(tj), t ∈ [tj , tj+1).

From (15) and (17), we have the following equivalent system:

dw(x, t) = [∆w(x, t) + qw(x, t)− ψT(x)v(tj)
+f(w(x, t) + ψT(x)u(t))]dt
+g(w(x, t) + ψT(x)u(t))dW(t), t ∈ [tj , tj+1),

w(x, t)|x∈∂O = 0, w(x, 0) = z(x, 0).

(18)

Present the solution to (18) as

w(x, t) =
∑∞
n=1 wn(t)ϕn(x), wn(t) = ⟨w(·, t), ϕn⟩O. (19)
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Differentiating wn(t) defined in (19) and using (18) and
Green’s first identity, we have

dwn(t) = [(−λn + q)wn(t)− bT
nv(tj) + fn(t)]dt

+gn(t)dW(t), t ∈ [tj , tj+1),
wn(0) = ⟨w(·, 0), ϕn⟩O,

(20)

where

bn = [⟨ψ1, ϕn⟩O, · · · , ⟨ψN , ϕn⟩O]T
(11)
= [ −b1

λn−µ1
⟨∂ϕ1

∂n ,
∂ϕn
∂n ⟩Γ2

, · · · , −bN
λn−µN ⟨∂ϕN∂n , ∂ϕn∂n ⟩Γ2

]T,

fn(t) = ⟨f(w(·, t) + ψT(·)u(t)), ϕn⟩O,
gn(t) = ⟨g(w(·, t) + ψT(·)u(t)), ϕn⟩O.

Introduce the notations:

A0 = diag{−λn + q}Nn=1, B0 = [b1, . . . ,bN ]T,

Ã = diag{Ξ0, A0}, B̃ = [IN ,−BT
0 ]

T.
(21)

By using Assumption 1 and Lemmas 7.1 and 7.2 in [21], we
obtain that the pair (A0,B0) is controllable, which implies
that (Ã, B̃) is controllable. Let K ∈ RN×2N be the controller
gain (it will be found from LMIs (25) below). According to
the network-based control described in Fig. 1, we propose a
dynamic controller defined by (17) and

v(tj) = −KX(tj − ηj), t ∈ [tj , tj+1),
X(t) = col{u(t), w1(t), . . . , wN (t)}, (22)

which is calculated on the controller side.

D. Well-posedness

Consider the state ξ(t) = col{u(t), w(·, t)}. Then system
(18) subject to the control input (22) can be presented as

dξ(t) = [A1ξ(t) + F1(ξ(t)) + F2(t)]dt+G(ξ(t))dW(t),
(23)

with A1 = diag{Ξ0,−A} where A is given by (3) and Ξ0 is
defined below (15), and

F1(ξ(t)) =
[

0

qw(·, t) + f(w(·, t) + ψT(·)u(t))

]
,

F2(t) =
[

−I
ψT(·)

]
K

[
u(t− τ(t))

{⟨ϕn, w(·, t− τ(t))⟩O}Nn=1

]
,

G(ξ(t)) =
[

0N×1

g(w(·, t) + ψT(·)u(t))

]
.

Let H = RN ×L2(O) be a Hilbert space with norm ∥ · ∥2H =
| · |2 + ∥ · ∥2L2(O). Take V = RN ×H1(O) with norm ∥ · ∥2V =

| · |2 + ∥ · ∥2H1(O), and V ′ = RN ×H−1
0 (0, 1). We see that A1

satisfies conditions B.1-B.3 on page 198 in [32]. From (2), it
can be verified for any ξ1, ξ2 ∈ H,

∥F1(ξ)∥2H + ∥G(ξ)∥2H ≤ 2(ρ2 + 1)max{σ2
f , σ

2
g}∥ξ∥2H,

∥F1(ξ1)− F1(ξ2)∥2H + ∥G(ξ1)−G(ξ2)∥2H
≤ 2(ρ2 + 1)max{σ2

f , σ
2
g}∥ξ1 − ξ2∥2H.

We first consider t ∈ [0, t0] (assume t0 > 0, otherwise we
first consider t ∈ [0, t1]). Since F2(t) depends on z0 only
for t ∈ [0, t0], we have E

∫ t0
0
[∥F2(s)∥2H < M0 for some

constant M0 > 0. Then by [32, Theorem 6.7.4], for any
initial value ξ0 ∈ L2(Ω;H) and ξ0 ∈ D(A1) almost surely,
the closed loop system (23) has a unique strong solution
satisfying ξ ∈ L2(Ω;C([0, t0];H)) ∩ L2([0, t0] × Ω;V), such
that ξ(t) ∈ D(A1) almost surely and is adapted to Ft for

t ∈ [0, t0]. Then by the step method on {[tk, tk+1]}∞k=1

with initial conditions ξ(tk) ∈ D(A), we obtain, for ξ0 ∈
D(A1) almost surely, existence of a unique solution ξ ∈
L2(Ω;C([0,∞);H)) ∩ L2([0,∞)\J × Ω;V), where J =
{tj}∞j=0, such that ξ(t) ∈ D(A1) almost surely.

III. MEAN-SQUARE L2 EXPONENTIAL STABILIZATION

By (16), (17), (20), and (22), we obtain the closed-loop
system for t ≥ 0:

dX(t) = F(t)dt+G(t)dW(t), t ≥ 0, (24a)

dwn(t) = [(−λn + q)wn(t) + bT
nK(X(t)− ν(t))

+ fn(t)]dt+ gn(t)dW(t), n > N, (24b)

where

F(t) = (Ã− B̃K)X(t) + B̃Kν(t) + FN (t),
ν(t) = X(t)−X(t− τ), with τ(t) defined in (16),
FN (t) = col{0N×1, f1(t), . . . , fN (t)},
G(t) = GN (t), GN (t) = col{0N×1, g1(t), . . . , gN (t)}.

Next, we derive LMI conditions for finding controller di-
mension N and gain K, upper bounds on Lipschitz constants
and sampling intervals, ensuring the global mean-squre L2

exponential stability of system (24). The main result is given
in the following theorem:

Theorem 1: Consider system (17)-(18) with f, g satisfying
(2) for some σf , σg > 0, and the control law (22). Assume
z0 ∈ D(A) almost surely and z0 ∈ L2(Ω;L2(O)). Let δ > 0
be a desired decay rate, N ∈ N satisfy (5) and Assumption
1 hold. Let there exist scalars α1, α2, α3 > 0, 0 < β1 <
1, matrices 0 < P̄ , S̄, R̄, Q̄ ∈ R2N×2N , M̄, P̄2 ∈ R2N×2N ,
Y ∈ RN×2N and tuning parameters ρ, ε1, ε2 > 0 such that
the following LMIs are feasible[

R̄ M̄
∗ R̄

]
≥ 0, (25a)[

−λN+1 + q + δ + 1
2 (α1 + α2 + α3) σf σg

∗ −α3 0
∗ ∗ −β1

]
< 0, (25b)[

−ε2(P̄2 + P̄T
2 ) + P̄ + τM Q̄ ε2β1I
∗ −β1I

]
< 0, (25c)

Θ̂11 Θ̂12 α3I

∗ Θ̂22 ε1α3I
∗ ∗ −α3I

Θ̂14 Θ̂15 0

∗ Θ̂44 0 Θ̂46

∗ ∗ Θ̂55 0
∗ ∗ ∗ − α2

∥ψ∥2
N

I

 < 0, (25d)

where
Θ̂11 = P̄T

2 Ã
T + ÃP̄2 − Y TB̃T − B̃Y + (1 − ετ )S̄ + 2δP̄ ,

Θ̂12 = P̄ − P̄2 + ε1P̄
T
2 Ã

T − ε1Y
TB̃T,

Θ̂22 = −ε1(P̄2 + P̄T
2 ) + τ2

M R̄, Θ̂46 = col{Y T, 0, 0, 0},

Θ̂14 =

 ετ S̄ + B̃Y ετ S̄ 0 0

ε1B̃Y 0 0 0
0 0 0 0

, Θ̂15 =

 σgP̄
T
2 Λ

1
2
2 P̄T

2 Λ
1
2
2 Y T

0 0 0
0 0 0

,
Θ̂4 =


−ετ (S̄ + R̄) −ετ (M̄ + S̄) ετ R̄ ετM̄

∗ −ετ (R̄ + S̄) ετM̄
T ετ R̄

∗ ∗ −ετ (R̄ + Q̄) 0
∗ ∗ ∗ −ετ (R̄ + Q̄)

,
Θ̂55 = diag{− β1

2 I,−
α3
2σ2
f

I,− α1
∥ψ∥2

N

I}, ετ = e−2δτM .

Then solution u(t), w(x, t) to (17), (18) under the control law
(22) with controller gain K = Y P̄−1

2 satisfy

E[|u(t)|2 + ∥w(·, t)∥2L2(O)] ≤ D0e
−2δtE∥z0∥2L2(O), (26)
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5

for some D0 > 0 and t ≥ 0.
Proof: We consider the Lyapunov functional

V (t) = VP (t) + VS(t) + VR(t) + VQ(t) + Vtail(t),
VP (t) = |X(t)|2P , Vtail(t) =

∑∞
n=N+1 w

2
n(t),

VS(t) =
∫ t
t−τM e−2δ(t−s)|X(s)|2Sds,

VR(t) = τM
∫ 0

−τM

∫ t
t+θ

e−2δ(t−s)|F(s)|Rdsdθ,
VQ(t) =

∫ 0

−τM

∫ t
t+θ

e−2δ(t−s)|G(s)|Qdsdθ,

(27)

where [P,R, S,Q] = (P̄−1
2 )T[P̄ , R̄, S̄, Q̄]P̄−1

2 are positive-
definite. Without loss of generality we assume z(·, t) = z0(·)
for t < 0. In this regard, the solution of system (24) for
t < 0 is well-defined. The construction of functional V (t)
follows [18], which is a stochastic extension of the Lyapunov
functional in [13]. The terms VS and VP are used to compen-
sate the delay term ν(t). Here VS has the same form as the
deterministic case, whereas VR is stochastic extensions of the
state-derivative-dependent double integral terms. The term VQ
compensates the stochastic parts of (24a) (see [33]).

Differently from the deterministic case [5], [26], we cannot
take generator L term by term in the infinite sum. Following
[17], we use Parseval’s equality and present Vtail(t) in (27) as

Vtail(t) = −V1(t) + V2(w(t)), V2(w) = ∥w∥2L2(O),

V1(t) = XT(t)Λ1X(t), Λ1 = diag{0N×N , IN}. (28)

From the well-posedness in Sec. II-D, we see that w(t) is a
strong solution to the following stochastic evolution equation:

dw(t) = [−Aw(t) + qw(t) + ψT(·)K[X(t)− ν(t)]
+f(w(t) + ψT(·)u(t))]dt+ g(w(t) + ψT(·)u(t))dW(t).

(29)
For V2(w), calculating the generator L along (29) for t ∈
[tj , tj+1) (see [32, P. 228]), we obtain

LV2(w(t))
(2)
≤ 2⟨w(t),−Aw(t) + qw(t) + ψT[X(t)− ν(t)]⟩O

+2⟨w(t), f(w(t) + ψTu(t))⟩O + σ2
g∥w(t) + ψTu(t)∥2L2(O)

≤
∑∞
n=1 2(−λn + q)w2

n(t) +
∑∞
n=1 2wn(t)b

T
nK[X(t)− ν(t)]

+
∑∞
n=1 2wn(t)fn(t) + 2σ2

g |X(t)|2Λ2
+ 2σ2

g

∑∞
n=N+1 w

2
n(t),

(30)
where Λ2 = diag{ΨN , IN} with ΨN = (⟨ψi, ψj⟩O)Ni,j=1

which is a positive semi-definite matrix. Calculating LV1 along
(24a) for t ∈ [tj , tj+1) (see [34, P. 149]), we have

LV1(t) + 2δV1(t) =
∑N
n=1 2(−λn + q + δ)w2

n(t)

+
∑N
n=1 2wn(t)b

T
nK[X(t)− ν(t)]

+
∑N
n=1 2wn(t)fn(t) + |GN (t)|2.

(31)

From (30) and (31), it follows

LVtail(t) + 2δVtail(t)
≤

∑∞
n=N+1 2(−λn + q + δ + σ2

g)w
2
n(t)

+
∑∞
n=N+1 2wn(t)fn(t) + 2σ2

g |X(t)|2Λ2
− |GN (t)|2

+
∑∞
n=N+1 2wn(t)b

T
nK[X(t)− ν(t)].

(32)

By Young’s inequality, we have for α1, α2, α3 > 0∑∞
n=N+1 2wn(t)b

T
nK[X(t)− ν(t)]

≤ (α1 + α2)
∑∞
n=N+1 w

2
n(t)

+
∥ψ∥2

N

α1
|KX(t)|2 + ∥ψ∥2

N

α2
|Kν(t)|2

(33)

and ∑∞
n=N+1 2wn(t)fn(t) ≤ α3

∑∞
n=N+1 w

2
n(t)

− 1
α3

|FN (t)|2 + 1
α2

∑∞
n=1 f

2
n(t),

(34)

where ∥ψ∥2N =
∑N
i=1 ∥ψi∥2N , ∥ψi∥2N :=∑∞

n=N+1 |⟨ψi, ϕn⟩O|2. From Parseval’s equality, we obtain∑∞
n=1 f

2
n(t) = ∥f(w(·, t) + ψT(·)u(t))∥2L2(O)

(2)
≤ σ2

f∥w(·, t) + ψT(·)u(t)∥2L2(O)

≤ 2σ2
fX

T(t)Λ2X(t) + 2σ2
f

∑∞
n=N+1 w

2
n(t).

(35)

Combination of (34) and (35) implies∑∞
n=N+1 2wn(t)fn(t) ≤

2σ2
f

α3
XT(t)Λ2X(t)

+(
2σ2
f

α3
+ α3)

∑∞
n=N+1 w

2
n(t)− 1

α3
|FN (t)|2.

(36)

Substitution of (33) and (36) into (32) gives

LVtail(t) + 2δVtail(t) ≤ 2(σ2
g +

σ2
f

α3
)XT(t)Λ2X(t)− |GN (t)|2

+
∑∞
n=N+1 2[−λn + q + δ + σ2

g +
α1+α2+α3

2
+

σ2
f

α3
]w2
n(t)

− 1
α3

|FN (t)|2 + ∥ψ∥2N
α1

|KX(t)|2 + ∥ψ∥2N
α2

|Kν(t)|2, t ∈ [tj , tj+1).
(37)

For VP , VS , VR, VQ, calculating generator L along stochas-
tic ODE (24a) for t ∈ [tj , tj+1) (see [34, P. 149]), we have

LVP (t) + 2δVP (t) = 2XT(t)PF(t) + |G(t)|2P + 2δ|X(t)|2P ,
LVS(t) + 2δVS(t) = |X(t)|2S − ετ |X(t)− ν(t)− θ(t)|2S ,
LVR(t) + 2δVR(t) = τ2M |F(t)|2R − εττM

∫ t
t−τM

|F(s)|2Rds,
LVQ(t) + 2δVQ(t) = τM |G(t)|2Q − ετ

∫ t
t−τM

|G(s)|2Qds, (38)
where θ(t) = X(t − τ) −X(t − τM ). By employing the Itô
isometry (see [35, P. 28]), we have

E[LVQ(t) + 2δVQ(t)] = τME|GN (t)|2Q
−ετE|ξ1(t)|2Q − ετE|ξ2(t)|2Q, t ∈ [tj , tj+1),

ξ1(t) =
∫ t
t−τu G(s)dW(s), ξ2(t) =

∫ t−τu
t−τM G(s)dW(s).

(39)
Let M = (P̄−1

2 )TM̄P̄−1
2 ∈ R2N×2N . From (25a), it follows[
R M
∗ R

]
≥ 0. (40)

Applying Jensen’s and Park’s inequalities (see, e.g., Sec. 3.6.3
of [28]), we obtain

τM
∫ t
t−τM |F(s)|2Rds

≥
[ ∫ t

t−τ F (s)ds∫ t−τ
t−τM

F (s)ds

]T[
R M
∗ R

][ ∫ t
t−τ F (s)ds∫ t−τ
t−τM

F (s)ds

]
=

[
ν(t) − ξ1(t)
θ(t) − ξ2(t)

]T[
R M
∗ R

][
ν(t) − ξ1(t)
θ(t) − ξ2(t)

]
.

(41)

Besides, from Parseval’s equality and (2) we have

|GN (t)|2 =
∑N
n=1 g

2
n(t) ≤

∑∞
n=1 g

2
n(t)

≤ σ2
g∥w(·, t) + ψT(·)u(t)∥2L2

≤ 2σ2
g |X(t)|2Λ2

+ 2σ2
g

∑∞
n=N+1 w

2
n(t).

(42)

Let η1(t) = col{X(t),F(t), FN (t), ν(t), θ(t), ξ1(t), ξ2(t)}
and η2(t) = col{G(t), GN (t)}. By (37) - (42) and using the
descriptor method:

0 = 2[XT(t)PT
2 + FT(t)PT

3 ][(Ã− B̃K)X(t) + B̃Kν(t)
+FN (t)− F(t)] + 2GT(t)PT

4 [GN (t)−G(t)],
(43)

where P2 = P̄−1
2 , P3 = ε1P2, P4 = ε2P2 with tuning

parameters ε1, ε2 > 0, we get

E[LV (t) + 2δV (t)] + βE[2σ2
gX

T(t)Λ2X(t)
+2σ2

g

∑∞
n=N+1 w

2
n(t)− |GN (t)|2]

≤ E[ηT1 (t)Θη1(t)] + E[ηT2 (t)Ξη2(t)]
+E[

∑∞
n=N+1 2χnz

2
n(t)], t ∈ [tj , tj+1),

(44)
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where β = 1
β1

− 1 > 0 and

χn = −λn + q + δ + (β + 1)σ2
g + σ2

f/α3

+ 0.5(α1 + α2 + α3), n > N, (45a)

Ξ =
[

−P4 − PT
4 + P + τMQ PT

4
∗ −(β + 1)I

]
, (45b)

Θ =

 Θ11 Θ12 PT
2

∗ Θ22 PT
3

∗ ∗ − 1
α3
I

Θ14

∗ Θ44

. (45c)

The blocks in matrix Θ in (45c) are give by

Θ11 = (Ã− B̃K)TP2 + PT
2 (Ã− B̃K) + (1− ετ )S

+2δP +
∥ψ∥2

N

α1
KTK + 2(β + 1)σ2

gΛ2 +
2σ2
f

α3
Λ2,

Θ12 = P − PT
2 + (Ã− B̃K)TP3,

Θ22 = −P3 − PT
3 + τ2MR,

Θ14 =

[
ετS + PT

2 B̃K ετS 0 0

PT
3 B̃K 0 0 0
0 0 0 0

]
,

Θ44 =

 Θ
(1)
44 −ετ (M + S) ετR ετM

∗ −ετ (R + S) ετM
T ετR

∗ ∗ −ετ (R +Q) 0
∗ ∗ ∗ −ετ (R +Q)

,
Θ

(1)
44 =

∥ψ∥2
N

α2
KTK − ετ (S +R).

Multiplying Θ in (45c) by diag{P̄2, P̄2, α3I, P̄2, P̄2, P̄2, P̄2}
and its transpose, from the right and the left, respectively, using
Schur complement, and recalling P3 = ε1P2, K = Y P̄−1

2 , we
obtain that (25d) implies Θ < 0. Similarly, multiplying Ξ in
(45b) by diag{P̄2, β1} and its transpose, from the right and
the left, and recalling P4 = ε2P2, β = 1

β1
− 1 > 0, we obtain

that (25c) implies Ξ < 0. Since λn are non-decreasing, from
(45a), it follows that χn < 0, n > N iff χN+1 < 0. Using
Schur complement and recalling β = 1

β1
− 1 > 0, we obtain

that (25b) implies χn < 0, n > N . Then, from (44) we have

E[LV (t) + 2δV (t)] < 0, t ∈ [tj , tj+1). (46)

Next, we prove that (26) follows from (46). By employing
Itô’s formula for e2δtVfinite(t) and e2δtV1(t), t ∈ [tj , tj+1),
where Vfinite(t) = VP (t) + VS(t) + VR(t) + VQ(t), along
stochastic ODE (24a) (see [34, Theorem 4.18]), and taking
expectation on both sides, we have

E[e2δtVfinite(t)] = E[e2δtjVfinite(tj)]
+
∫ t
tj
e2δsE[LVfinite(s) + 2δVfinite(s)]ds,

E[e2δtV1(t)] = E[e2δtjV1(tj)]
+
∫ tj+1

tj
e2δsE[LV1(s) + 2δV1(s)]ds, t ∈ [tj , tj+1).

(47)

Employing Itô’s formula for e2δtV2(w(t)), t ∈ [tj , tj+1),
along (29) (see [32, Theorem 7.2.1]) and taking expectation
on both sides, we arrive at

E[e2δtV2(w(t))] =
∫ t
tj
e2δsE[LV2(w(s)) + 2δV2(w(s))]ds

+E[e2δtjV2(w(tj))], t ∈ [tj , tj+1). (48)
Using (47), (48), and the definition V (t) = Vfinite(t)−V1(t)+
V2(w(t)) (see (27) and (28)), we obtain

e2δtEV (t) = e2δtjEV (tj) +
∫ t
tj
e2δsE[LV (s) + 2δV (s)]ds

(46)
≤ e2δtjEV (tj), t ∈ [tj , tj+1),

which implies EV (t) ≤ e−2δ(t−tj)EV (tj), t ∈ [tj , tj+1).
From Sec. II-D, it follows that E|X(t)|2 and E∥w(·, t)∥2L2(O)

are continuous for all t ≥ 0. This combined with the definition
of V (t) in (27) and (28) implies that EV (t) is continuous, i.e.,
EV (t−j ) = EV (tj). Then we obtain EV (t) ≤ e−2δtEV (0) for
all t > 0, which implies (26).

Remark 6: The suggested stochastic descriptor method (i.e.,
(43)) is a stochastic extension of the deterministic case in [28,
Sec. 5], leading to σg (Lipschitz constant for the multiplicative
noise term g) dependent LMIs (25). Here we introduce an
additional free matrix P4 in (43) for the controller gain design,
otherwise, (45b) becomes P + τMQ − (β + 1)I < 0. It is
equivalent to P̄+τM Q̄−(β+1)P̄T

2 P̄2 < 0, which is nonlinear.
Remark 7: In Theorem 1, LMIs (25) are provided for

finding minimal N and as large as possible upper bounds
on σf , σg, τM . For example, to find the upper bound on τM ,
we take τM as a tuning parameter, starting from a small
value and progressively enlarging it till the LMIs become
infeasible. We theoretically prove that inequalities (25) (i.e.,
(40), (45)) are always feasible for large enough N and small
enough τM , σf , σg > 0. We choose α1 = α2 = λN+1

2 > 0,
α3 → 0+ and ρ = 1. From ∥ψ∥2N defined below (34) and
the fact that ∥ψi∥2L2 = ρ = 1, we obtain ∥ψ∥2N ≤ N . From
Lemma 1, we have 1

α1
∥ψ∥2N = 1

α2
∥ψ∥2N < 2N

λN+1
→ |O|

2π ,
N → ∞. Therefore, there exists N -independent χ0 > 0 such
that 1

α∥ψ∥
2
N ≤ χ0 for all N . We take τM , σf , σg → 0+,

ρ = 1, S = 0, M = 0, Q = R, P2 = P4 = P , P3 = PT
3 .

Since {λn}∞n=1 are non-decreasing, it is clear that (40) and
(45a) hold for large N . By using Schur complement, we find
that (45b) and (45c) are feasible if

− (β + 1)I + P < 0, (49a)[
Θ0 (Ã− B̃K)TP3 P B̃K

∗ −2P3 P3B̃K

∗ ∗ χ0K
TK − 1

2R

]
< 0, (49b)

Θ0 = (Ã− B̃K)TP + PT(Ã− B̃K) + 2δP + χ0K
TK.

Letting R = rI and P3 = p3I with r → ∞ and p3 → 0+, we
find that (49b) holds iff Θ0 < 0. We fix N0 such that

−λn + q + δ + 3
2σf + σ2

g < 0, −µn + q < 0, n > N0.

Design K ∈ RN×2N and P ∈ R2N×2N be of the form

K =

[
Ku 0 Kw 0
0 0 0 0

]
, P =


P11 0 P12 0
∗ puI 0 0
∗ ∗ P22 0
∗ ∗ ∗ pwI

 ,
where pu, pw > 0, Ku,Kw ∈ RN0×N0 and 0 < P0 =[
P11 P12
∗ P22

]
∈ R2N0×2N0 are to be determined later. Let

B̂0 =


IN0

−

 ⟨ψ1, ϕ1⟩O · · · ⟨ψN0 , ϕ1⟩O
...

. . .
...

⟨ψ1, ϕN0⟩O · · · ⟨ψN0 , ϕN0⟩O


 , K0 = [Ku,Kw],

Â0 = diag{−µ1, . . . ,−µN0 ,−λ1, . . . ,−λN0}+ qI2N0 .

By using Schur complement and choosing pu, pw = 1
N , we

find that Θ < 0 for N → ∞ if

P0(Â0 − B̂0K0) + (Â0 − B̂0K0)
TP0 + 2δP0

+χ0K
T
0 K0 < 0.

(50)
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Since (Ã, B̃0) is stabilizable, (Â0, B̂0) is also stabilizable.
We can choose K0 = [Ku,Kw] ∈ RN0×2N0 such that Â0 −
B̂0K0 + δI is Hurwitz. Let P0 ∈ R2N0×2N0 be such that

P0(Â0 − B̂0K0 + δI) + (Â0 − B̂0K0 + δI)TP0 = −χI,
(51)

where χ > 0 is independent of N and satisfies χI >
χ0K

T
0 K0. Then P0 = O(1), N → ∞. Substituting (51) into

(50), we find that (50) is feasible. Since we take pu, pw =
1
N < 1, we obtain P = O(1), N → ∞. Take β = N . It is
obvious that (49) hold true for N → ∞. By continuity, (40)
and (45) are feasible for small enough τM , σf , σg = 1

N2 and
large enough N → ∞.

Remark 8: We can employ the controller dimension N and
the gain K obtained from the deterministic system design (see
[18, Sec. 3.1]) or continuous-time controller design (see [26,
Remark 2.2]), but this leads to more conservative results (see
Tables II and III in Sec. IV). For the continuous-time controller
design, we use LMIs (42) - (44) in the conference version [29]
to get gain K, and by (37) - (41), we obtain (26) provided[ −λN+1 + q + δ + α3σ

2
f + (1 + β)σ2

g 1 1 1
∗ −2α1 0
∗ ∗ −2α2 0
∗ ∗ ∗ −2α3

]
< 0,

P + τMQ− (1 + β)I < 0,[
Θ11 P
∗ −α3I

ετS + P B̃K ετS 0 0
0 0 0 0

∗ Θ33

]
+τ2MΛT

3RΛ3 < 0, Λ3 = [Ã− B̃K, IN , B̃K, 0, 0, 0],

Θ11 = (Ã− B̃K)TP + P (Ã− B̃K) + (1− ετ )S
+2δP + α1∥ψ∥2NKTK + 2(β + 1)σ2

gΛ2 + 2α3σ
2
fΛ2,

Θ33 =

 Θ
(1)
33 −ετ (M + S) ετR ετM

∗ −ετ (R + S) ετM
T ετR

∗ ∗ −ετ (R +Q) 0
∗ ∗ ∗ −ετ (R +Q)

,
Θ

(1)
33 = α2∥ψ∥2NKTK − ετ (S +R). (52)

IV. A NUMERICAL EXAMPLE

In this section, we consider a rectangular domain O =
(0, a1) × (0, a2) with a1 = a2 = 1 and boundary (6). In this
case, λn, ϕn are given by (7), (8), and ψi are given by (12). We
consider system (1) where f, g satisfy (2). Consider q = 20
and q = 49.4, respectively, which results in an unstable open-
loop system with 1 unstable mode for q = 20 and 3 unstable
modes for q = 49.4, respectively. We will consider ρ = 0.05
and ρ = 1√

2
, respectively. Here ρ is the tuning parameter

introduced below (10) satisfying ∥ψi∥L2(O) = ρ. Note that
ρ = 1/

√
2 corresponds [8], [9] for 1D case.

First, we choose δ = 10−4, ε1 = 0.01, ε2 = 1, and fix τM =
0.01 for q = 20 and τM = 0.001 for q = 49.4. The feasibility
of LMIs (25d), (25a) and (25b) was verified to obtain σmax

f

(the maximal value of σf ) for σg = 0.1 and σmax
g (the maximal

value of σg) for σf = 0.1. The results are given in Table I.
From Table I, we see that the choice ρ = 0.05 leads to larger
σmax
f and σmax

g than ρ = 1√
2

. In particular, for N = 5 and
σg = 0.1, the value of σmax

f increases by 23.85% for q = 20
and 59.09% for q = 49.4.

We next fix σf = 2, σg = 0.1, ε1 = 1, ε2 = 10 for q = 20
and σf = 0.5, σg = 0.1, ε1 = 0.02, ε2 = 4 for q = 49.4.
The LMIs (25d)-(25b) (descriptor method) and LMIs (52)

TABLE I
σmax
f AND σmax

g FOR N = {1, . . . , 5} WITH q = 20 (ε1 = 0.01, ε2 = 1,
τM = 0.01) OR q = 49.4} (ε1 = 0.01, ε2 = 2, τM = 0.001).

σmax
f for σg = 0.1 σmax

g for σf = 0.1

q 20 49.4 2 0 49.4
N\ρ 0.05 1√

2
0.05 1√

2
0.05 1√

2
0.05 1√

2
1 2.61 2.14 – – 1.18 0 .88 – –
2 2.52 2.05 – – 1.16 0.85 – –
3 5.04 4.08 0.51 0.27 1.96 1 .52 0.19 0.12
4 5.14 4.15 0.82 0.53 1.99 1 .55 0.28 0.15
5 5.08 4.09 0.70 0.44 1.96 1 .53 0.21 0.13

with the gain K obtained from continuous-time design (by
solving LMIs (42)-(44) in [29]) were verified, respectively,
for N ∈ {1, . . . , 5} (q = 20) and N ∈ {4, . . . , 8} (q = 49.4)
to obtain τmax (the maximal value of τM ) which preserves the
feasibility. The results are given in Table II (q = 20) and Table
III (q = 49.4), respectively. From Tables II and III, we see
that the controller design via descriptor method allows larger
sampling intervals and transmission delays than the design
based on the non-delayed case as in [26]. In particular, for
ρ = 0.05 and N = 5, τmax increases by 131% for q = 20
and by 116% for q = 49.4. Moreover, we see that the choice
ρ = 0.05 leads to larger sampling intervals than ρ = 1√

2
.

It should be noted that for the gain K obtained from the
deterministic system design as in [18], for both cases, the LMIs
(52) are not feasible even for τmax = 0.

TABLE II
τmax FOR q = 20, σf = 2, σg = 0.1, AND N ∈ {1, . . . , 5}: THEOREM 1

(DESCRIPTOR METHOD WITH ε1 = 0.1, ε2 = 10) VS REMARK 8
(CONTINUOUS-TIME DESIGN).

N
ρ = 0.05

Theorem 1 Remark 8
ρ = 1/

√
2

Theorem 1 Remark 8
1 0.0291 0.0210 0.0097 0.0065
2 0.0280 0.0191 0.0072 0.0047
3 0.0807 0.0384 0.0487 0.0273
4 0.0807 0.0373 0.0492 0.0270
5 0.0807 0.0348 0.0488 0.0263

TABLE III
τmax FOR q = 49.4, σf = 0.5, σg = 0.1, AND N ∈ {4, . . . , 8}: THEOREM

1 (DESCRIPTOR METHOD WITH ε1 = 0.02, ε2 = 4) VS REMARK 8
(CONTINUOUS- TIME DESIGN).

N
ρ = 0.05

Theorem 1 Remark 8
ρ = 1/

√
2

Theorem 1 Remark 8
4 0.0058 0.0030 0.0040 0.0016
5 0.0054 0.0025 0.0033 0.0011
6 0.0090 0.0051 0.0074 0.0039
7 0.0089 0.0052 0.0074 0.0036
8 0.0092 0.0056 0.0081 0.0039

For simulations of system (17), (18) with control (22),
inspired by the parabolic sine-Gordon model [36], we consider
f(z) = σf sin z. Assume that σf undergoes random perturba-
tions and is replaced by σf → σf+σgẆ(t) (see [37]) leading
to the stochastic term σg sin zdW(t). We consider q = 49.4,
ρ = 0.05, σf = 0.5, and σg = 0.1. Fix N = 4. Table III shows
that the upper bound of τM is 0.0059. We get the controller
gain from LMIs (25):

K =

[
320.7 0 −117.4 0 5223.1 0 −138.4 0

0 63.3 0 −3.7 0 81.9 0 −52.1
357.7 0 −129.0 0 7988.4 0 −337.9 0

0 35.0 0 16.9 0 822.7 0 −174.1

]
.
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We take h = 0.004 and ηM = 0.0018 (clearly, τM = h+ηM =
0.0058). The variable sampling instances on the controller side
were generated by sj+1 = sj+0.5(1+U1,j)h, ηj = U2,j ·ηM ,
where U1,j ∼ Unif(0, 1), U2,j ∼ Unif(0, 1). Take the initial
condition z(x, 0) = 10x1(x1 − 1) sin(πx2). The simulation
was carried out by using the FTCS (Forward Time Centered
Space) method and the Euler-Maruyama method with time
step 0.0001 and space step 0.05. The simulation results are
presented in Fig. 2 and confirm the theoretical analysis.
The stability of the closed-loop systems in simulations was
preserved for larger h = 0.018 (compared to theoretical value
h = 0.004), which may indicate that our approach is somewhat
conservative in this example.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

Fig. 2. E[|w(·, t)|2 + |u(t)|2] (E means taking average over 50 sample
trajectories).
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