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ABSTRACT

This paper addresses a switched sampled-data control design for stabilization of the N-dimensional (N-D) semilinear heat equation
with a mobile actuator. It is supposed that discrete-time averaged measurements are available. The system is known to be stabi-
lizable by the static output-feedback employing several distributed in space actuators and sensors, but is not stabilizable by only

one of the actuator-sensor pairs. Does there exist a switching stabilizing static output-feedback such that at all times, only one

actuator-sensor pair is active? In our recent paper we gave a positive answer and found the appropriate switching sampled-data

time-triggered control law for the one-dimensional (1-D) case. In this paper, to enlarge the time between switching (which means to
reduce the frequency of actuator moving to the active domain), we present an event-triggered control for stabilization by switching.
Moreover, we extend the results for stabilization by switching to the N-D case. Numerical examples show that the switching-based

event-triggered controller essentially decreases the frequency of the actuator moving compared to the time-triggered controller,

reducing operating costs.

1 | Introduction

Switching control for partial differential equations (PDEs) has
attracted extensive attention recently (see References [1-8]). In
Reference [5], the following problem was formulated: “Assum-
ing that one can control a system using two or more actuators,
does there exist a control strategy such that at all times, only
one actuator is active?” A positive answer for some PDEs sub-
ject to corresponding switching laws was given in Reference [5].
The implementation of optimal and switching policies of spatially
scheduled actuators was suggested for PDEs (see Reference [6]).
In Reference [7], intermittent control of the reaction-diffusion
equation by time-dependent switching between all working pairs

of collocated mobile actuators and sensors and the rest (all not
working) has been studied. In Reference [8], the integrated design
of switching control and mobile actuator/sensor guidance was
proposed to exponentially stabilize the linear reaction-diffusion
equation. Note that the methods mentioned above for switching
control or for control by mobile actuators and sensors may be
inefficient for the unstable open-loop systems.

Event-triggering mechanism (ETM) can be used to reduce the
network workload (see References [9-19]). Its basic idea is to
send the signal only when the discrepancy between the cur-
rent signal value and the signal, which was last transmitted is
large enough. Due to potential superior performance as well as
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possible advantages in the stability analysis, ETM for PDEs has
attracted extensive attention. Periodic ETM for distributed con-
trol of 1-D semilinear diffusion PDEs was presented in Refer-
ence [12] effectively reducing the number of spatially distributed
measurements transmitted through a communication network in
the numerical example. Boundary continuous event-based con-
trol via the backstepping method was suggested for 1-D linear
hyperbolic systems of conservation laws in Reference [13] and
for 1-D linear heat equations in Reference [14]. Continuous ETM
for distributed control of 1-D nonlinear Korteweg-de Vries (KdV)
equation was introduced in Reference [15]. Continuous ETM
was presented for adaptive output-feedback boundary control
of a hyperbolic PDE-Ordinary Differential Equation (ODE) cou-
pled system in Reference [16], for boundary control of highly
re-entrant manufacturing systems modeled as a nonlinear hyper-
bolic PDE in Reference [17], for the wave equation in Reference
[18], and for boundary control of semilinear parabolic PDEs with
non-collocated distributed event-triggered observations in Ref-
erence [19]. In all the continuous ETMs for PDEs, one of the
main challenges is to prove the avoidance of the Zeno behav-
ior. To reduce the workload, in the present paper we introduce
event-triggered control for stabilization by switching. Moreover,
we extend stabilization by switching to N-D PDEs.

In our recent paper [20], time-triggered sampled-data stabiliza-
tion by switching of 1-D parabolic PDEs was suggested. Although
the above time-triggered switching control improves the perfor-
mance with reduced operating and production costs, this method
also increases the system cost since actuator switching happens
at fixed times regardless of whether the switching is necessary
or not. Therefore, the event-triggered switching control has been
developed to reduce the unnecessary switching cost and wear,
and thus improve the utilization rate of system resources (see Ref-
erences [9, 21, 22]). In References [21, 22], event-driven schemes
were introduced to reduce the switching cost and frequency of
signal transmissions for 1-D parabolic distributed parameter sys-
tems. Note that ETM with switching for the stabilization of semi-
linear N-D parabolic distributed parameter systems by moving
actuators, is still an open problem, which motivates our study.

This work addresses an event-triggered control design for sta-
bilization by switching of N-D reaction-convection-diffusion
equation under the Dirichlet/Neumann boundary conditions
with spatially scheduled actuators. Constructive conditions are
derived to ensure that the resulting closed-loop system is expo-
nentially stable by means of the Lyapunov approach. The main
contributions of this paper can be summarized as follows:

« In this paper, we extend our recent result on switching-based
stabilization of the 1-D diffusion-reaction equation to a more
general N-D reaction-convection-diffusion equation. Exten-
sion of stabilization from 1-D to N-D PDEs under averaged
measurements is challenging due to the high dimension,
including the well-posedness proof and stability analysis. For
example, the result in Reference [23] cannot be extended to
the N-D case, which motivates our work.

« We present efficient ETM for switching control-ETM signifi-
cantly reduces the number of sent measurements compared
to time-triggered control in the numerical example.

A remainder of the paper is organized as follows. Section 2
introduces some useful inequalities. In Section 3, a dynamic
event-triggered control law is suggested to stabilize the semilinear
N-D reaction-convection-diffusion equation by switching. The
proposed control law is based on the averaged measurements.
Sections 4 and 5 are devoted to illustrate our main theoretical
results. A numerical example is given to show the effectiveness
of the proposed theoretical statements in Section 6. Finally, con-
cluding remarks comprise Section 7.

Notation. Matrix R > 0 represents that R is symmetric pos-
itive definite. I denotes the identity of appropriate dimen-
sions. £2(Q) stands for the Hilbert space of square integrable
scalar functions f(x) on Q ¢ RY with the corresponding norm

I Nl = [ fo fz(x)dx]é. L£2(Q) denotes the space of essen-
tially bounded function f(x) on Q with the corresponding norm
[/l g0y = €sSsup,eqlf(x)|. The Sobolev space H*(Q) with
ke Z is defined as H*Q) = {f : D*f G[lz(Q)l, VO<|a| <

k} with norm || £l o) = { Zo<jai<k ||D"f||iz(g)}i. For z(x) =
m - T
210, M) ERY, Vo = [£, 2] and ¥,z =

dax; " "7 oxy
1 M NM
[V.zl,....V zM] € RVM,

2 | Useful Inequalities

Lemmal. (Wirtinger’s inequality [24, 25]). For Q=
[0, L1V, let z € HY(Q)and z : Q — R with z|,o = 0. Then the fol-
lowing inequality holds:

2 L2 2
”z”£2(g) < W “sz”CZ(Q)

Lemma 2. (Poincaré’s inequality [24, 26]). For Q=
[0, L1V, let z € H'(Q)and z : Q — Rwith [, z(x)dx = 0. Then

7'172

2 2
W ”Z”£2(Q) < ”VxZHEZ(Q)’

3 | Problem Formulation

Denote by Q the N-dimensional domain Q = [0, L]N with the
boundary 0Q. Let

O=ty<t;, <<t <t <..., I}imtkzoo
— 00

be a sequence of sampling instants that will be determined by
dynamic ETM later.

Consider the following semilinear N-D

reaction-convection-diffusion PDE:

z,(x,t) = Az(x,t) = PV z(x, 1) + Az(x, 1) + @(z(x, 1))
+b,, (X)Bu,, (1), X € Q1 € [t 1141) ®
z(x,0) = zy(x)

subject to Dirichlet
zZl3o=0,1>0 2)
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or Neumann boundary conditions
0z
— =0,7r>0 3
o 3)

where z(x,t) = [z'(x,1), ..., zM(x,H]T € RM is the state
of the diffusion equation, z,(x) is the initial state, u(f) =
[t (D), ...,u"®)]" € R" is the control input of the plant, o,
is the switching signal, A € RM*M B € RM*" are constant
matrices, and g € RMXNM g the convection coefficient matrix.
The diffusion term is given by

Az(x,1) = [AZ'(x,0), ..., AzM (x, 0]

N

2 m
AZ"(x,1) = ZM, m=1,2,....M
i 6xi

‘We make the following assumptions:

« Controllability: The pair (A, B) is controllable.

« Nonlinearity: It is supposed that the function ¢ is of class C*
and satisfies the following inequality:

@' (20, 0)(z(x, 1) < 2" (x,1)Qz(x, 1) “)

where Q € RM*M is some positive definite matrix. The
open-loop system (1) may become unstable if ||Q]| in (4) is
large enough.

Spatial sampling: As in References [27-30], we divide Q into
N, equal subdomains Q; (j =1, ..., N;) with Uj].i“'le =Q.
The shape functions b ;(x) are chosen to be characteristic
functions b,(x) of Q; as follows:

j=1,...,N, 5)
b;(x) =1, otherwise,

{bj(x) =0, xgQ,
« Measurements: Assume that sensors provide the averaged
measurements:

/Qi z(x,)dx ~ <N

N
() = s P 6
v;(0) )] ) /Qj z(x,0dx, j=1,...,N, (6)

L

« Moving time: The moving time 6 € (0, i) for actuators to
the appropriate domain Q, 1is taken into account similar to
Reference [20]. Therefore, the length of sampling subinter-
vals in time satisfies

0<hy <ty =1y

« Time sampling: Inspired by References [31, 32], the sam-
pling instants 0 =1¢, <t <--- <t <t;,; < ..., lim_
t, = oo are determined by the following dynamic ETM with
a waiting time h, > 0:

N:
f441 = min {t > 1+ h0|2[|ej(z)|2 _ g|yj(t)|2] > em(t)} (7)

Jj=1

where € > 0, 0 > 0, and the errors e;(t) = y;(t) — y;(1,) are
continuous for ¢ € [t, + hy, t,,;). The dynamic variable m(r)
satisfies the following differential equation:

—2g,m(t),
= e+ Y, [ely,OF = le,OF]. 1 € [t + o 1)

®)
for scalar parameters €, > 0 and £; > 0. Assume that the ini-
tial condition m(0) = m, > 0, which implies that m(¢) > 0 for
t € [0, o0). This dynamic ETM can determine the sampling
instants at which the measurements and the switching con-
trol law need to be updated, whereas the actuator starts mov-
ing to the resulting zone.

tE [ty t,+h
) = [tk 1+ o)

In order to take into account the moving time of actuators, we
follow Reference [20] and consider additional switching between
the open-loop system (when the actuator is moving) during the
part of the sampling interval and the closed-loop switched system
during the remaining part of the interval.

Inspired by the above, we aim at proposing a dynamic
event-triggered controller for stabilization by switching of
N-D reaction-convection-diffusion PDE (1) that can be imple-
mented by

1€ [ty1, +6)

0,
U, (1) = %)
— Ky, (1)), t €[l +6,1141)

with some K € R™M that A — BK is Hurwitz. The switching
signal o, is calculated at time 7, whereas it takes 6 seconds for
actuators and sensors to move to the domain Q .

Our main objective is to find an appropriate output-depending
switching law. Define a characteristic function:

1,
Xian(® = 0.

Under the controller (9), the closed-loop system has the form

if t € [a, b]

otherwise

z,(x,1) = Az(x,1) — pV, z(x, 1) + Az(x, 1) + @(z(x, 1))

N\ (10)
= (= Xy, 46006, (x)BK(—L‘ ) / z(x,t,)dx
Q

Ok

subject to (2) or (3). If b, (x)Bu, (1) in (1) is changed by
Zj\i‘lbj(x)Buj(t), then the corresponding closed-loop system
is exponentially stable (see Reference [24]). The latter means
that the average of systems (1) with b, (x)Bu, (1) changed by
b;(x)Bu,(t) is stabilizable by the static output-feedback (9). Fol-
lowing Reference [20], define a min-type switching function by
using the Lyapunov function V(1) = [, z"(x,nP,z(x, 1)dx with
P, > 0 according to

6, = argmin V(t)

30f13
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for t € [t, + 6,1, + h,) along the closed-loop system (10). Thus,
we have

y <NA‘>N T T pT
Ve =-( == / Z"(x,0)dx(P,BK + K" B P2)/ 2(x, 1) x
L Q; Q;
+ / 2L (x, (P, A + AT Py)z(x, H)d x
Q

+ 2/ 2 (x, DP[Az(x, 1) — pV  z(x, 1) + @(z(x,1))]dx
Q (11)

Then for small enough #,, (11) leads to the following switch-
ing rule:

arg min V' (f) = argmin [—/ 2 (x,1,)dx(P, BK + K"’B"'PZ)/ z(x,t,)dx
J . Q;

Qj
(12)
For [t + hy, ,,,), we still choose the above switching rule. The
switching rule (12) means that the o, -th mode is active if

/ 2T (x,t,)dx(P,BK + KT BT P,) / 2(x, t;)dx
Q; Q;

s/ zT(x,tk)dx(PzBK+KTBTP2)/ 2(x,t,)dx,¥j =1, ..., N
Q
Tk

Ok

Remark 1. If (4) holds locally for |z| < 6, with some 6, > 0,
then regional stabilization can be achieved following the argu-
ments of Reference [35]. If (6) is changed by pointlike measure-
ments as considered in Reference [23], a time-delay approach
with appropriate Lyapunov functional seems to be not applica-
ble for N > 2. Here a continuous-time ETM should be studied
like considered in References [13-15] for PDEs, which can be a
subject for future research.

4 | Well-Posedness of the Controlled System

In this section, we will analyze the well-posedness of the system
(1) subject to (2) or (3) under the switching control law (9) by
using the step method.

Define the system operator A : D(A) C [L2()]Y — [L2(Q)]M
as follows:

Ag=Ag—-pV. g+ Ag
D(A) = [H* Q1M n [Hj (1M

It is well-known that A is a dissipative operator, and .4 generates

an analytic semigroup T'(t). Operator —.A is positive, implying
1

that its square root (—.4)2 is also positive. Moreover,

D(=A)%) = [H}@" = {g € [H'@]" | glsa =0}

Fort € [1,,t,] and the event-triggered switching control law (12),
we assume that the o,-th mode is active. Consider the following
equation:

z,(x,1) = Az(x,1) — pV, z(x,1) + Az(x, 1) + @(z(x,1))

N
_bak (x)BK(%) /96;( zo(x)dx 13)

zlogo =0
z(x,0) = zo(x)

Then the system (13) can be represented as an evolution equation:

L2, 1) = Az(, 1) + F(2(, 1)
2(-,0) = z,(-)

where the nonlinear term F is defined on function z(-, ¢) accord-
ing to

@(z(-, 1)),
N N
@20, 0) = by, (x)BK(TS> Jag, 200, 1 € lig +5.11]

t € [ty, 1y + 8]
F(z(-,1) =

It should be noticed that the nonlinear term F is locally Lipschitz
continuous.

Then by using Theorem 3.3.3 of Reference [33], we obtain that for
any initial conditions z, € [H(} (Q)]M, there exists a unique strong
solution on [0, T] C [t,, 1,1

z € C([0,T); [Hy (1) n L2([0, T); D(A))

14)
z, € £L2([0, T): [L2@)]™)

We will prove that under the conditions of Theorem 1, the solu-
tion is bounded, and thus is continuable to all intervals [0, T'].
Then, by applying the same arguments step by step on [t,,7,,),
we conclude that there exists a strong solution for all # > 0. Sim-
ilarly, for the case of the Neumann boundary conditions (3), the
proof of well-posedness can be established by applying the same
procedure. We can conclude that a strong solution exists for all
t > 0 in the sense that

z € C([0, 00); [H ()1M) N L£%([0, 0); D(A))
z, € L2([0, 00); [L2(Q)]M)

where ;
D(A) = {g € [HX(Q)M | £|(m - 0}

5 | Stability Analysis of the Controlled System

Jo, 2x.dx A Jo [z, (x.s)dsdx
Denote f.(x,1) 2 z(x,t) — ——— e, (1) & = |
S0 2 20 - 22 ) N

1,2, ..., N,. We consider using the elementary relation

tE [t 1, +6)

uo'k (t) = {0’
= Klz(x,0) = fo, (x,0) — e, (D], 1 € [t} +8,1;,1)
15)
Under the controller (15) satisfying the switching law (12), the
closed-loop system can be presented as two switches between
three systems. The first one (for ¢ € [, 1, + §)) is governed by

z,(x,1) = Az(x,t) — PV z(x, 1) + Az(x,1) + @(z(x,1))
(= Ziaysabo, OBK [266,0) = £, (6,0) = €, 0],
X €E€Q,tE[t;,t;41)
z(x,0) = zo(x)

(16)

subject to (2) or (3). The second one (for ¢ € [z, + 6,1, + hy)) is
governed by (16) where the ETM is not activated. The third one
(fort € [t + hy, 1)) is governed by (16) subject to the continu-
ous ETM (7).
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Now we focus on the stability analysis of the above closed-loop system. To achieve this purpose, we construct the following
Lyapunov-Krasovskii functional:

where

with P, > 0, R > 0, and positive diagonal M X M-matrix P; = diag{ p;, ..

V(O) = Ve () + Ve O+ Ly s, 1,00 OVR® +m(@0).1 € [t 1,,7)

Vp (1) = / z"(x, )P z(x, t)d x
Q

M
Vo=, /Q (V2] (x,
m=1

) PV z" (x, )dx

t
Vr(@®) = (hg + 1, — l)/ / e 2092 (x, 5)Rz(x, 5)d sdx
Q Ju+6

over, due to (14), V (¢) is absolutely continuous in z.

an

..pM} > 0. Note that Vy(t, + 8) = Vi(t; + hy) = 0. More-

The following results provide sufficient conditions in the form of the LMISs for the closed-loop system (16) under the Dirichlet boundary

conditions:

Theorem 1.

Consider the closed-loop system (16) subject to Dirichlet boundary condition (2). Given positive parameters
K,hy,0,€.€,2,6,6; > a,hy, > 6 and tuning parameter a, such that ah, > (o, + a)é, let there exist M X M matrices P, > 0,P, > 0,P, =

diag{pé, .. pé\l} > 0,P; > 0,R > 0, and scalars Ay, > 0,4; > 0 (i = 0,1,2) that satisfy the following inequalities:
I N
2a+ (=) A0 —g,<0 (18)
(%) wo-e
¥, <0, m=0,1,2,3 19)
where
—2ayP, + 4,0 P+ ATP; 0 0
* -2P. -P P.
¥, = ’ P ’ (20)
* * =200, @Iy 0
% % * —AQIM
‘qﬂ p__b + ATP P,p P, P,BK+K" B" P, P,BK+K" BT P, ]
18 B Yt 3 N-1 N1 N,-1 N,-1
* (hg—6)R—2P; —P;p P, 0 0
* * ‘1%3 0 0 0
¥, = (21)
* * ® —Aoly 0 0
P,BK+K"BTP. P,BK+K"BTP.
* * * * _AIIM - W _#
" " " " " : et o PBK+K" B P,
| hy—6 N,-1
‘I’fl P —-P,+(A-BK)'P, —Pp P, P,BK - P,BK—K"B"P, P,BK-P,BK—K'B"P,
* (hg—6)R — 2P, -Pf P P,BK P,BK
* * ‘1’53 0 0 0
Y, = (22)
* * *  —Aoly 0 0
* * * * —i Iy + P,BK + KTBT P, P,BK + KT BT P,
_e—Zu(hO—o') T oT
] * * * * * e R+ P,BK +K'B Pz_
_\1,3 P _ P ATp _Pb P, P,BK+K” BT P, P,BK+K"B" P, |
171 N 3 N1 N1 N,—1 N.-1
* —2P, -Pp P, 0 0
* * p3 0 0 0
P, = 3 (23)
* * x  —Aoly 0 0
% " " % AT — P,BK+K"B"P,  P,BK+K"B"P,
] M NY_]‘ N$_1
i % % * * * ‘I‘éé |
50f13
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(W P, —P,+(A-BK)'P; -P,§ P, P,BK-P,BK-K"B"P, P,BK—P,BK—K'"B"P,]
* —2P, -Pf P P,BK P,BK
* * i 0 0 0
Y, = 33 (24)
* * * —/IQIM 0 0
* * * x =Ml +P,BK+K"BTP, P,BK + KT BT P,
4
| % % % % ‘1‘66 |
¥l = ~ 1_ - [Py(A — BK) + (A — BK)" P)] + 2aP, + 4,0 — Aol
N
pl=g3 = /IN—LZI +,1L—21 +2aP - —2 P\ @I
33 33 lNSzﬂzM ON2° M 37N —1°2 N
! = P(A— BK)+(A—BK)' P, + P,BK + K" B"P, + 2aP, + 4,0 — A1),
P2 o=yt = NL21 LZI 2aP, — 2P 1
337 7337 /llNZﬂ-Z M+/10N”2 M+a3_ 4 ®N
N
3 1 T N N
¥ = ~ 1 [P,(A = BK) + (A — BK)" P +2aP, + 4,0 — AgIy, + Ayely + € A Iy
§
N
W - ag N, o P,BK + K"B" P,
66 2°M M N —1
N
N N
‘I"l‘l = P,(A— BK)+ (A— BK)TP,+ P,BK + KT BT P, + 2aP, + AoQ — Aol yy + Ayely + £<f> Iy
N N
Wio= =0y - (f) Iy, +P,BK +K'"B"P,
Let a; be subject to
0 < ayhy < ahy — (@, + a)s (25)

Then the closed-loop system (16) subject to (2) is exponentially stable.

Proof.  Step 1: On the moving time interval [7,, 7, + §), we have the open-loop system. We first derive sufficient LMI-based conditions
to guarantee that V(1) — 2a,V (¢) < 0 for [t,, 1, + 6).

Taking the time derivative of V() along the trajectory of the open-loop system (16) subject to (2), for 7 € [t,,t, + 5) we have

V(t) =2,V (1) = I'/,,1 ®) + Vpa (1) + 1i(1) = 20 [Vp (1) + Vp (1) + m(D)]

M
=2/zT(x,t)Plz,(x,t)dx+22/p;"z;"(x,z)z;',’t(x,t)dx
Q m=1 7 Q

M

- 2a, / 27 (x, P z(x,t)dx — 2(102 /(Vz;"(x, t))TP3Vz::'(x, 1dx
Q m=1JQ

—2(g; + ap)m(t)

From (4), we have
Ao / [z (x,00z(x,1) — @" (z(x, N)p(z(x,1)]dx > 0 (26)
Q

for any A, > 0.

We apply the descriptor method of Reference [34] to (16), where the left-hand side of the following equation
2/ th(x, NP [—z,(x, 1) + Az(x, 1) = fV, z(x, 1) + Az(x, 1) + @(z(x,1)]dx =0 27)
Q

is added to V (t) — 2a,V (¢).
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Set n, = col{z(x,1), z,(x,1), V. z(x, 1), p(z(x,1))}. Therefore, we
have

V(t) =2,V (1) < /ﬂ 2 (x, )| 200 P, + 4o 0] 2(x. )dx
-2 /Q 2 (x, ) Pyz,(x, )dx + /Q VEz(x.1)[-20y P, ® Iy|V, z(x.t)dx
Ao /!2 @ (z(x, 1)) p(z(x,))dx + /sz ' (x. 0[P, + AT Py z,(x. )dx
+2 /!2 25 (x, Py [=BV 2(x. 1) + p(2(x, )| dx

< / e Wongdx < 0,1 € [ty 1, + )
Q
(28)
if ¥, < 0 holds.

Step 2: On the waiting time interval [t, + 8,1, + h,), the ETM is
not activated. To obtain the maximal value of the waiting time, we
derive sufficient conditions to guarantee that V'(t) + 2aV () < 0.

Differentiating along the closed-loop system (16) subject to (2)
and (12), we have

M
V() +2aV (1) = 2/ 2T (x, 1) P, z,(x, dx + 22 / Py (x, 027, (x, )dx
Q m=17Q

+(hy+ 1, —1) / 2! (x. )Rz, (x, dx
Q

t
—// e_z"('_”zz'(x,s)Rz:(x,s)dsdx
Q Jiy+o

+2a / 21 (x, 1) Py 2(x, I)dx+2az / (Vz"(x, )" P,V2"(x, 1)dx

m=17Q
+ 2(a — €;)m(t)

(29)
Jensen’s inequality leads to

I
- / / e_z”‘(’_”zST(x, $)Rz(x, s)dsdx
(146

_p—2alhg=5) r
_ / [z(x,1) = z(x, 1)1 Rlz(x,1) — z(x,1;)]dx (30)

I/\

—Za(hn—zS)

— Z / el (n)Re;(1)dx

I/\

Wirtinger’s inequality yields
)‘0 [ ”V Z”[Z(Q) ”Z”L'Z(Q) (31)

for any 4, > 0.

Since /g_ fi(x,dx =0, Poincaré’s inequality leads to

N
AIZ|:N2 z/ IV, 2(x, f)lzdx-/ |, (x,0) dx] >0 (32)

where 4, > 0.

N
Note that |Q;] = <— , j=1, N,. Then integrating (12)

over the subdomain Q;, we have

N\‘

1
N—1Z

s T4 e 19

[20e.0) = f(x.0) = ;D]

X (PyBK + K" BT P)z(x,1) = f,(x,1) — ¢,()]dx (33)

< [tz - 1,60 - e 0
Q,

Ok

X (P,BK + KT BT P))[z(x.1) = £, (x.1) — ¢, (N]dx

We apply the descriptor method of Reference [34] to (33), where
the left-hand side of the following equations

v Z / 2 (x, Py —z,(x, 1) + Az(x, 1) — BV 2(x, 1)

oy

+ Az(x, 1) + @(z(x,1))]dx =

2/ 27 (x, t)P4{—z,(x, 1)+ Az(x, 1) — pV z(x,1)
Q,

Tk

+ Az(x, 1) + p(z(x,1)) —BK[z(x, 1) — f”k (x,1) — €y 1) }dx =0

with P, > 0 and P, > 0 are added to (33). Then one has

Z/ 27 (x, N[ P,(A — BK) + (A — BK) P,]z(x, 1)dx

N, —1#%

_1 Z/ fT (P, BK + K" BT Py) f,(x, dx

J#oy

Z el ()(P,BK + KT BT Py)e; (dx

N, —1#% o

+

_1 2 / 2T (. 0)(P,BK + KT BT P)[f;(x.1) + ¢;(1)]dx

J#ok

Z FT G 0(PBK + K" BT Pye;(1)dx
s J#”k Q/

1 Z / 27 (x, P [—z,(x, 1) + Az(x,1) — PV  z(x, 1) + @(z(x, 1) ]ldx

Jj#o|
+ / 2T (x,))[Py(A — BK) + (A — BK)" P, + P,BK + KT BT P,]z(x, t)dx
Q,

Ok

+ / 17 (e.)(P,BK + KT BT P)f, (x.1)
Q”k

+ / e:k ()(P,BK + K" BT Pye,, (1)
Ok

+ 2/ 2" (x,1)(P,BK — P,BK — KTBTPZ)[ka (.0 + e, (D]dx
Q,

k

+ z/ fﬂ’)’c(x, 1)(P,BK + K" BTPz)eUk (tydx
QJ

+ 2/ 2 (x, ) Py[—z,(x, 1) + Az(x,1) — BV 2(x, 1) + @(z(x,1))]dx > O
Qo.k

(34)
We apply further the descriptor method to (16), where the
left-hand side of the following equation

2 / zl (x, Py {=z,(x, 1) + Az(x, 1) — BV, z(x, 1)
Q

+ Az(x,1) + @(z(x,1)) — b‘,k (x)BK|[z(x,t) — fak (x,t) — €, 0] }dx =0

(35)
is added to V (¢) + 2aV (1).
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From (26) and (29-33), we have

V() +2aV (1)

/ zT (x t){
Q;

+2aP + hg Q= Ayl y pz(x.dx + Z / z] (x, Ol(hy — 6)R — 2P;]z,(x. )dx
J#oy

o e—2atho—5) P,BK +K"B"P,
|- R- e;(dx
-6 N, -1 /

s

— [P,(A - BK) + (A— BK)" P,]
1#6;(

#ffk

P,BK + KTBTPZ
N

s

+ Z ij(x, 1) [—AIIM ] £(x.0dx

oy T

Ny Ns
- / @ Gx, PG, D)dx + Y / V! z(x.1)
J J

J#oy J#oy

[/11 NL? 1M+,10

Nz IM +2aP; —

1 P2] ® InV, z(x,t)dx

+2Z/ zT(x,t)[Pl— L 1P2+ATP3]Z,(x,t)dx
ﬂj -

J#oy

—1

/ 2" (x, 1)(P,BK + K" B" Py)[ f;(x, 1) + e;(]dx
j#oy 7L

_1 Z / f/T(x, N(P,BK + K" B" Py)e;(1)dx
Q;

J#ok

+22 / [ G ’)PZ + 2 (0 Dy | [~V 2(x, ) + @(z(x. D) ]dx

J#oy
+ / 2zl (x,1)[Py(A — BK) + (A — BK)' P,
Qp
+ P,BK + K" BT P, + 2a P, + 450 — 4g1,,)z(x, )dx

+ / 2 (x.0[(hy — 6)R — 2P3]z,(x. )dx

Qg

o—2a(hy=6)
+ / eﬁk(t)[ R+ P,BK + KB P, e, (Ddx
ng

+ /Q J3 0= Ty + P,BK + KT BT P)f,, (x.0)dx
= / @7 (20x, 0)@(z(x, 1))dx
Q"k

+2aP; — 2P| @ IV, z(x,t)dx

L?
T
+/p V. z(x, t)[ﬂl 2 2IM+/10N

20

+ 2/Q f}k (x,1)(PyBK + KTBTPZ)eEk (Hdx
Ok

+ 2/ Z2I(x, D[P, — P, + (A — BK)T Py]z,(x,1)dx
Q"k

+ 2/ 2 (x,)(PyBK = P,BK — KT BT P)[ £, (x,1) + ¢, (N]dx
Q"k

+ 2/ [z . OP, + 2] (x. 0P| { =BV 2(x.0) + @(2(x, 1)) }dx

Q.
+ 2/ z/ (x, DPyBKf,, (x.1) + e, (Dldx +2(a — 1)m(t),1 € [t} + 5,1, + ho)
Q,

(36)
Set iy = col{z(x,1), z,(x, 1), V z(x, 1), @(z(x, 1)), f;(x. 1), €;(D)}. ] #

o, andn, =col{z(x, 1), z,(x,1), V, z(x,1), p(z(x, 1)), fak(x, 1), €, }.

Then we have

V() +2aV (1) < Z / an‘Plnldx+ / 112T‘P2112dx
J#oy QUA

+2(a —eg)m(1),t € [t, + 6,1, + hy)

where ¥, and ¥, are given by (21) and (22).

Step 3: On the remaining part of the time interval [7;, + hy,#;,,),
the ETM is activated. We derive sufficient LMI-based conditions
to guarantee that V() + 2aV (t) < 0.

For (6), Jensen’s inequality leads to

| (t)|2— /QJZ(X,t)dx 2< 1 / 2( td
Vi = |Q,-| _|Q,-| sz x,t)dx

Then above inequality and the event-triggering condition (7)
yield

0< 2[6|yj(t)|2 - |ej(t)|2] +6m(r)

N N
N € N 51 2

< — z°(x,)dx — —/ e ()| dx+ 0m(t)
Sl Ziat Jo ]

Thus, for 4, > 0, we have

N.&
,122{ Jo, ez 0P - |ej(t)|2]dx} + xz(%)Nem(t) >0
j=1

(37)
Differentiating along the closed-loop system (16) subject to (2),
(7), and (12), we get

V(t) + 2aV (1)
P,(A — BK) + (A — BK)T P.
/ 2(x, r){ 2 )+ ) 2 4 2aPy + 290 — Ayl
o N, -1
/#Jk 3
NS
+Aely + € A IM z(x,t)dx — 22 z, T(x, 1) Pyz,(x,t)dx
j#o)

o S PZBK+KTBTP2
(t) A0y — IM - —— | e;(1)dx
N, -1 /
J#Gk 5

+Z/ FHE 1)[ iy —

J#oy

e Z / (L(x,t))(p(z(x 1)dx + Z / VTz(x 1)

J#ok J#ok

— (P,BK + KT BT Pz)] £ 0dx

2
[41 i Ty + dg—— N IM +2aP; — PZ] ® Iy V, z(x, dx

+2Z / T(V,t)[

P2 + A P3]z (x,ndx
J#oy

+ 5 2_1 Z / 2 (x, ))(P,BK + KT BT Py)[f;(x, 1) + €;(]dx
s jEo Iy
“ N1 2/ 1] x.0(P,BK + KT B Py)e, (ndx

J#oy

+2z / [7 x. ”PZ + 27 (1 )P3]{ BV, 206, 1) + @(z(x, 1) hdx

Jj#o

+ / 28 (x,1)[P,(A — BK) + (A — BK)' P, + P,BK + K" B P, + 2aP,
Q"k

NN
+ 400 — Aol + Ayl + E(TS) IM:| z(x,t)dx—Z/ er(x, 1 Pyz,(x,t)dx
)

[

N N
+ / eGTk(t) [—A"ZIM - (T) I, +P,BK + KTBTPZ] e, (Ddx
Q
%k
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+ / fo, 0= Ty + P,BK + KT BT Py)f,, (x.0)dx
Q
Ok

N
— iy / o7 (20x, ) p(2(x, D)dx + [m + (N£> 1,60 - so] m(r)
Q, s

Ok

T NIL?
+ /Q V5 z(x, t)[A] N

IM +2aP; —2P4] Q@ IyV, z(x,t)dx
ok

L?
STy + A
M ON
+2 / S} .0(P,BK + KT B Pye,, (ndx
Qg
+ 2/ Z2I' (x,1)[P, — P, + (A — BK) P;]z,(x,)dx
Q"k
+ 2/ 2" (x,1)(PyBK — P,BK — K" B" P))[f,, (x,1) +¢,, (1)ldx
Q
Ok

+ 2/ [27 .0y + 2] (x. )Py | { =BV c2(x. 1) + @(z(x. 1)) }dx
Q,

+2 / 2 (P BKL S, (6 1) + €, (D1d,1 € [t + oty )

Qo

Then we have

V() +2aV (1) < Z/ 7! ‘P3;11dx+/ 0l nydx

J#oy Qo

N
+ |:2a + <N£> Ay0 — 50] m(t),t € [t; + hy,1;41)
s

where ¥, and ¥, are given by (23) and (24).
Step 4: From Step 1-Step 3, we obtain the feasibility of LMIs (18)
and (19) that implies that any strong solution of (16), (2) initial-

ized with z, admits a priori estimate

o V() <%=V (1)), Vt € [t,,1;, + 6),

o V() < e Xm0V (1, +6), Vi € [t + 8,14,1)-
Since a; < @ and 1., —t, > h, (25) implies
(o — )ty — 1) < (o — a)hy < —(ag + a)d (38)
Hence,
V(tpyy) < 200220 =4=0y (1) < o201y (7,
if0 < a,hy < ahy—(ay + a)b.

Fort € [t;,1, + §),
V(1) < %%V (t,)

Fort € [t, + 8,,,1),
V() < V(t, +68) <V (t,)

Therefore, we have V(1) < e*®°V(z,) < e200 20tV (1, 1) <
- < W2 Y (0), t € [ty i)

Then using the step method of Reference [34], we conclude that
the strong solution exists for all # > 0. Moreover, the closed-loop

system is exponentially stable. O

Under the Neumann boundary conditions, the result is similar:

Theorem 2. Consider the closed-loop system (16) subject
to Neumann boundary condition (3). Given positive parame-
ters K,hy,0.e,.6,2,6,6, > a,hy > 6, and tuning parameter «,
such that ahy > (ay+ a)d, let there exist M X M matrices
P, > 0,P, > 0,P; =diag{p}, ....p¥} > 0,P, > O,R > 0, and
scalars Ag > 0,4; >0 (i =1,2) that satisfy (18) and (19) with
Ao = 0. Let a; be subject to (25). Then the closed-loop system (16)
subject to (3) is exponentially stable.

Remark 2. The proof of Theorem 2 is omitted. For the
case of Neumann boundary conditions, Wirtinger’s inequality
(Lemma 1) is not applicable. Hence, if the LMI conditions of
Theorem 1 with 4, = 0 hold, then the closed-loop system (16)
under the Neumann boundary conditions (3) is exponentially
stable.

Remark 3. As for the feasibility of the LMI conditions of
Theorem 1, we first show that strict inequalities ¥,, < 0 withm =
0,1,2,3,4holdwithé =hy=e =p =a =0 = 4, =0, and large
enough Ay, 4;, Ny, . Then LMIs ¥, <0 with m=0,1,2,3,4
hold with small enough 6 > 0, 4, > 0,€ > 0, |||l > 0,2 > 0,0 >
0, Ao > 0, and large enough 4,, 4,, Ny, ;. Since (A, B) is control-
lable, there exists K such that A — BK is Hurwitz. Let P, > 0 be
the solution to the equation P,(A — BK) + (A — BK)T P] =—yly
for some large enough scalar y > 0. Set R = I,, P, = Pl, and
P; = P, = P,. Then for large enough N, 4, the Schur comple-
ment theorem withé =hy=e = =a =0 = 4, =0leads to

W, <0 20,P, — (P, + A" P)2P) (P, + PLA) >0
W, <0.%, <0e —¥] — (P +A"P)Q2P) (P + PA)> 0,9}, <0

T
& —LM___(p 4 ATP)RP) (P + PLA)> 0,9, <0

N,(N, -1) (39)

¥, <0,¥, <0< —¥] —(A- BK)"P(2P))"' P{(A - BK) > 0,%2, <0

Syly - NL(PIBK +KTB"P)—(A- BK)"P,(2P))"' P,(A - BK) > 0,%3, <0

’ (40)
Here we use the fact that W}, = W3, ¥2, =P}, and for e =0
‘IJl = ‘I‘i’l,‘ll2 = ‘I‘4 Note that‘P < 0holds with a large enough
ap- G1ven a <a, the inequalities (18) and (25) hold with appro-
priate g, > 2« for small enough 6 and 6. Choose large enough v,
A1, and N such that /11 ( 1s large, and (39),

(40) hold. Therefore, the LMI condltlons of Theorem 1 are always
feasible for small enough 6, hy, ¢, ||B]l,, @, O, 4,, 6 and large
enough Ags A1, Ny, ag, 7. 1t should be noticed that the above anal-
ysis with 4, = 0 guarantees the feasibility of the LMI conditions
of Theorem 2.

6 | Simulation Example

Consider the semilinear 2-D reaction-convection-diffusion PDE
with M = 2 and m = 2 as follows:

z,(x,1) = Az(x,1) — PV z(x,1) + Az(x, 1) + @(z(x, 1))
+b,, (x)Bug, (1), x € 2 =10,1]x [0,1] (41)
z(x,0) = zo(x)

subject to Dirichlet boundary condition (2), where zy(x) =
[sin(zx;) sin(zx,), 2sin(zx;) sin(zx,)17,  @(z(x,1) = [0.01(1 —
e 12 01T and
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40 10 Set N, = 4. This means that Q is divided into four equal subdo-
A= , B= mains (see Figure 1). As seen from Figure 2, the open-loop system
01 .
(41) is unstable.

. 0.01 0.01 0.05 0 |60
0 005 0.01 0.01] 04

Some parameters of the dynamic ETM (7) are selected as i, = 0.1,
£ =0.0001, g, = 2.5, £, = 0.1, 0 = 0.0001, and m, = 10. Choose
a =0.09, ay = 4.8, 2, =0.01, and § = 0.001. By Yalmip, the feasi-

Xoa ble solutions of LMI conditions of Theorem 1 can be obtained as
follows:
1 Q
Ap = 240.7294, A, = 33.1760, 4; = 67.9458, 4, = 1.1532 X 103
_ | 5.5853 —0.0806 _ | 3.8497 -0.0136
' -00806 58717 |7 2 [-0.0136 4.4565
09628 O 11.5544 —-0.0857
Ql Qz P3 = s P4 =
0 1.6054 —0.0857 10.9844
0 1 x R= 1.1028 0.0357
. . 0.0357 0.3481
FIGURE1 | Domain Q and subdomains Q;.
2z, t),t =0 2z, t),t =2
22(z,t),t =0 22(z,t),t =2
FIGURE2 | State of the open-loop system (41).
22(x,t),t =2
FIGURE 3 | State of the closed-loop system (41).
10 0f 13 International Journal of Robust and Nonlinear Control, 2024
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0.8+ 1
0.6
04+ 1
0.2
ST |
0 0.5 1 1.5 2

t

FIGURE4 | Release time and interval of dynamic ETM (7).

-0.5 1

U, (1)

-1.5

0 0.5 1 1.5 2

FIGURES5 | Controlinput (9).

Ok

0 0.5 1 1.5 2
t

FIGURE 6 | Locations of the actuator.

The steps in time and space are chosen as dx = 0.02 and dt =
0.0002, respectively. The finite difference method is adopted to
compute the solutions of the closed-loop system (41). Under
the proposed dynamic event-triggered switching controller (9)
subject to the switching rule (12) and dynamic ETM (7), the
closed-loop system (41) is stable as Figure 3, which illustrates
the effectiveness of our proposed methods. Figure 4 depicts the
release time and interval of dynamic ETM (7). Figure 5 shows
the trajectory of control input (9). The locations of the actuator
are described in Figure 6.

12(, ) 2
20 ¢ : ,
— open-loop system
— closed-loop system under one stationary actuator located
atQ g
15 — closéd-loop system with the event-triggered switching
controller
5 -
-
0 L —
0 1 2 3
t
FIGURE7 | |[z(-, )|, of the open-loop system, closed-loop system

under one stationary actuator located at ©,, and closed-loop system with
the dynamic event-triggered switching controller (9).

TABLE1 | Comparison with different values of ¢, 6, and m,,.
Sent Maximal
£ (7] m, measurements value of h,
0.001 0.0001 10 7 0.1003
0.0005 0.0001 10 8 0.1034
0.0001 0.0001 10 9 0.1142
0.0001 0.0005 10 8 0.1142
0.0001 0.001 10 7 0.1142
0.0001 0.001 25 6 0.1142
0.0001 0.001 75 5 0.1142
0 0 0 20 0.1504

Figure 7 shows the time evolution of || z(-, #)|| .. of the closed-loop
and open-loop systems. The closed-loop system with the pro-
posed dynamic event-triggered switching controller (9) is stable,
whereas the closed-loop system under only one stationary actua-
tor is unstable.

With different values of ¢, 6, and m,, in dynamic ETM (7), the
amount of sent measurements and the maximal values of A, are
shown in Table 1. The simulation results indicate that the sent
measurements are reduced by choosing larger €, 6, and m,. The
maximal value of A is decreased with a larger €. The last line in
Table 1 (with e = ¢, = €; = 0 = 0) corresponds to time-triggered
switching control (considered in our previous work [20]). It is
seen that the suggested ETM reduces the number of sent mea-
surements (5 compared with 20) at least by 4 times.

7 | Conclusions

In this paper, stabilization of the N-D semilinear reaction-
convection-diffusion equation under the event-triggered con-
troller by using switching has been considered. Sufficient con-
ditions have been provided by means of LMIs that ensure the
corresponding closed-loop system is exponentially stable. In the
future work, we may focus on the study of the event-triggered
controller design for 2-D parabolic PDEs under pointlike

11 0f13
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measurements or stochastic PDE systems and coupled PDE-PDE
systems by switching.
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